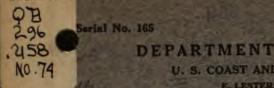


This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines


Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + *Refrain from automated querying* Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + Keep it legal Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

DEPARTMENT OF COMMERCE U. S. COAST AND GEODETIC SURVEY E. LESTER JONES, Director

763,381

ENGIN, LIB.

A

UTAH-WASHINGTON ARC OF PRECISE TRIANGULATION

Assistant Chief, Division of Geodesy

C. V. HODGSON

BY

Special Publication No. 74

PRICE, 15 CENTS Sold by the Superintendent of Documents, Government Printing Office Washington, D. C.

> WASHINGTON GOVERNMENT PRINTING OFFICE

• .		Engta, Library
	· .	QB
		296
		7458
		ec.74

.

.

.

•

١

•

Serial No. 165

DEPARTMENT OF COMMERCE U. S. COAST AND GEODETIC SURVEY E. LESTER JONES, Director

UTAH-WASHINGTON ARC OF PRECISE TRIANGULATION

BY

C. V. HODGSON

Assistant Chief, Division of Geodesy

Special Publication No. 74

PRICE, 15 CENTS

Sold by the Superintendent of Documents, Government Printing Office Washington, D. C.

> WASHINGTON GOVERNMENT PRINTING OFFICE 1921

ан Алтана, · . , •

•

•

Eng. 1.6 GQB 296 . 458 . no. 74

`

CONTENTS.

PART L	
General statement	Page.
Classes of triangulation.	5 5
Arrangement of subject matter.	6
The North A merican datum	7
The North American datum Explanation of positions, lengths, and azimuths, and of the North American	•
datum Uee of horizontal control data	7
Use of horizontal control data	10
Explanation of tables	11
Arrangement of tabulated data	11
Explanation of lengths.	11
Azimuth and back azimuth.	12
Accuracy of data indicated in tables	12
How to find the data desired	12
Related publications.	13
Geographic positions Table of elevations	14 22
Description of stations	23
Description of stations Marking of stations	23 23
Conversion tables.	23
	20
PART II.	
General statement	41
General statement Reconnoissance and signal building	41
Horizontal angle observations	42
Instructions governing the observations	42
Instruments and methods	43
Organization of party	44
Time spent on observing	44
Accuracy secured	46
Statement of costs	46
Base measurement.	47
Description of base.	47
Methods used	47
Standardizations of tapes.	48 48
Reduction to sea level. Computation of Stanfield (Oreg.) base line. Statement of cost.	48 49
Statement of cost	49 50
Astronomic work.	50
Laplace points.	50
Astronomic latitudes	50
Astronomic longitudes	51
Astronomic azimuths	54
Cost of astronomic work	. 56
Truck transportation	56
Problems involved	56
	57
Analysis of costs, field and office	57
Statement of adjustments and discrepancies Horizontal directions and elevations of telescope above the station marks	58
Horizontal directions and elevations of telescope above the station marks	60
Condition equations. Computed corrections to observed directions.	64
Computed corrections to observed directions.	67
Corrections to angles and closures of triangles	68
Table of triangles.	68
Accuracy of observations Computation, adjustment, and accuracy of the elevations	71
Computation, adjustment, and accuracy of the elevations	71
Index	75 77
	- 11

3

CONTENTS.

ILLUSTRATIONS.

	ILLUSI RATIONS.	
	Following	page.
Fig. 1.	Standard marks of the U.S. Coast and Geodetic Survey	22
	Standard triangulation station marks.	24
	Index map showing areas in the United States covered by published triangulation which has been rigidly computed on the North Ameri-	
	can datum	76
Fig. 4.	Index map of the Utah-Washington arc	76
	Triangulation, southeastern end of arc, in Utah and Idaho Triangulation, northwestern end of arc, in Oregon and Washington	76 76

.

.

.

•

•

UTAH-WASHINGTON ARC OF PRECISE TRIANGULATION.

By C. V. HODGSON, Assistant Chief, Division of Geodesy, U. S. Coast and Geodetic Survey.

PART I.

GENERAL STATEMENT.

This publication gives the results for the arc of precise triangulation which extends from the vicinity of Great Salt Lake, Utah, northward into Idaho, and then westward and northwestward to the Columbia River and to a junction near Portland, Oreg., with the California-Washington arc of adjusted precise triangulation. The region through which this arc runs and the approximate location of the control points in the scheme can be most readily seen

by referring to the index sketch at the back of this publication. The tabulated arrangement of data follows the general plan adopted by the U.S. Coast and Geodetic Survey some years ago. No attempt has been made to secure originality in language in the explanation of the tables. On the contrary, in some paragraphs the language is identical with that found in previous publications of this Bureau, and it was not considered necessary to indicate such paragraphs as quotations.

The writer made all of the observations for the triangulation and azimuth along this arc, the latitude and longitude observations were made by J. E. McGrath and W. B. Fairfield, hydrographic and geodetic engineers, and the office computations and adjustments of the triangulation were made by the members of the division of geodesy at the Washington office of the U. S. Coast and Geodetic Survey. The compilation of the tabulated data and the discussion of methods of adjustment were made by W. F. Reynolds, chief computer.

CLASSES OF TRIANGULATION.

Triangulation is divided into different classes according to ac-The terms applied to these classes have recently been curacy. changed by agreement of representatives of the various Federal mapmaking bureaus. Four classes of triangulation are now prescribed and defined-viz, precise, primary, secondary, and tertiary. The first three of these are, respectively, equal in accuracy to the classes primary, secondary, and tertiary as previously designated by the U. S. Coast and Geodetic Survey. The ultimate criterion applied in classifying the different grades

of triangulation is the actual error in the length of any line. This

is indicated by the discrepancy between the measured length of a base line and its length as computed through the triangulation from the last preceding base. In precise triangulation such discrepancies must not exceed one part in 25 000, in primary triangulation one part in 10 000, and in secondary triangulation one part in 5000. Before making the comparison between the computed and meas-ured lengths the adjustment of the triangulation should be carried to the point where the side and angle equations have been satisfied. It is also necessary to take into consideration the maximum actual error in the measurement of the base.

To secure the accuracy indicated above, certain standards are adopted for the field work, the most important one of which relates to the closing error of the triangles or the discrepancy between the measured sum of the angles in a triangle and 180° plus the spherical excess of the triangle. In precise triangulation the average closing error of the triangles must not be greatly in excess of 1'', in primary not more than 3'', and in secondary about 5''. The shape of the figures in the triangulation scheme, the frequency of bases, the size of the instrument, and the number and kind of observations are all selected with due regard to the accuracy desired.

Under certain conditions the proportionate error in the length of a line as specified above may be found to be exceeded in any class of triangulation. Where two points are comparatively close together as compared with the size of the triangulation scheme the distance between those points may be in error in excess of that indicated by the class of triangulation of the scheme. The accuracy of the computed length of any line can be estimated by computing the ΣR_1 in accordance with the formula for the strength of figures as given in U.S. Coast and Geodetic Survey Special Publication No. 26. In any class of triangulation the subsidiary stations will be located with a less degree of accuracy than the main scheme stations.

ARRANGEMENT OF SUBJECT MATTER.

In Part I are given such data for the Utah-Washington arc of pre-

cise triangulation as will ordinarily be needed for control purposes. The final results of a system of triangulation take the form of geographic positions, which give the latitude and longitude of each point of the triangulation, the azimuths of each line, and the logarithm of the length in meters of each line, together with its length in meters and feet.

Geographic positions, with descriptions and elevations of the stations, are arranged in tabulated form in Part I of this publica-Here the engineer and surveyor will find the data which tion. will give him control points for his local surveys. On page 12, under the heading "How to find the data desired," is a description of the use of the tables. The tabulation of the various kinds of data given in Part I is arranged in the following order: (1) The geographic positions of the triangulation points are found in the tables on pages 14 to 21. Points of precise accuracy are found in a separate table from those of lower grades. (2) Following the geographic positions is a table, page 22, giving the trigonometric elevations of all points, referred to mean sea level. A note on page 22 indicates the degree of accuracy to be expected in the three different classes of elevations. Such elevations, intended

primarily to furnish the approximate elevations of the stations in order that the sea-level lengths of the lines may be computed, may be used for some topographic purposes but not as elevations from which to start spirit leveling. (3) The descriptions of all marked points, with the character of the marks, are given on pages 23 to 32. (4) The lengths of the lines are given in this publication in both meters and feet, but for the convenience of those who may wish to convert other quantities from one system to the other conversion tables are given on pages 33 to 40.

Part II of this publication is devoted to a brief description of the methods employed in making the observations and to a discussion of the errors and methods of adjustment. Tabulations of different factors in the results are given, as well as the condition equations used in making the adjustments.

An analysis of the costs of the different operations in both field and office is given for the information of the public for whose benefit the work was done.

THE NORTH AMERICAN DATUM.

Concerning the actual use of the table of geographic positions, it is necessary to explain the "North American datum," which serves as the basis for all the geodetic values in this report.

Early in the year 1913 the Superintendent of the U. S. Coast and Geodetic Survey was notified by the director of the Comisión Geodésica Mexicana and by the chief astronomer of the Dominion of Canada Astronomical Observatory that the so-called United States standard datum had been adopted as the datum for the triangulation of those organizations. They also reported that the Clarke spheroid of 1866, now used in the United States, would be used by them.

Owing to the international character of the datum adopted by the three countries, the Superintendent of the U. S. Coast and Geodetic Survey changed its designation from the "United States standard datum" to the "North American datum."

EXPLANATION OF POSITIONS, LENGTHS, AND AZIMUTHS, AND OF THE NORTH AMERICAN DATUM.

All of the positions and azimuths have been computed upon the Clarke spheroid of 1866, as expressed in meters, which has been in use in the U. S. Coast and Geodetic Survey for many years.

After a spheroid has been adopted and all the angles and lengths in a triangulation have been fully fixed it is still necessary, before the computation of latitudes, longitudes, and azimuths can be made, to adopt a standard latitude and longitude for a specified station and a standard azimuth of a line from that station. For convenience the adopted standard position (latitude and longitude) of a given station, together with the adopted standard azimuth of a line from that station, is called the geodetic datum.

The precise triangulation in the United States was commenced at various points and existed at first as a number of detached portions in each of which the geodetic datum was necessarily dependent only upon the astronomic stations connected with that particular portion. As examples of such detached portions of triangulation there may be mentioned the early triangulation in New England and along the Atlantic coast, a detached portion of the transcontinental triangulation centering on St. Louis and another portion of the same triangulation in the Rocky Mountain region, and three separate portions of triangulation in California, in the latitude of San Francisco, in the vicinity of Santa Barbara Channel, and in the vicinity of San Diego. With the lapse of time these separate pieces expanded until they touched.

The transcontinental triangulation, the office computation of which was completed in 1899, joined all he detached portions mentioned and made them one continuous triangulation. As soon as this took place the logical necessity existed of discarding the old geodetic data used in these various pieces and substituting one for the whole country, or at least for as much of the country as is covered by continuous triangulation. To do this was a very tedious piece of work and involved much preliminary study to determine the best datum to be adopted. On March 13, 1901, the superintendent adopted what was known from that time until 1913 as the United States standard datum, but is now known as the North American datum, and it was decided to reduce the positions to that datum as rapidly as possible. The datum adopted was that formerly in use in New England, and therefore its adoption did not affect the positions which had been used for geographic purposes in New England and along the Atlantic coast to North Carolina, nor those in the States of New York, Pennsylvania, New Jersey, and Delaware. The adopted datum does not agree, however, with that used in the Transcontinental Triangulation and in the Eastern Oblique Arc of the United States, publications which deal primarily with the purely scientific problem of the determination of the figure of the earth and which were prepared for publication before the adoption of the new datum.

As the adoption of such a standard datum was a matter of considerable importance, it is in order here to explain the desirability of this step more fully.

The main objects to be attained by the geodetic operations of the U. S. Coast and Geodetic Survey are, first, the control of the charts published by the Survey; second, the furnishing of the geographic positions (latitudes and longitudes), of accurately determined elevations, and of distances and azimuths, to officers connected with the Survey and to other organizations; third, the determination of the figure of the earth. For the first and second objects it is not necessary that the reference spheroid should be accurately that which most closely fits the geoid within the area covered, nor that the adopted geodetic datum should be absolutely the best that can be derived from the astronomic observations at hand. It is simply desirable that the reference spheroid and the geodetic datum adopted shall be, if possible, such a close approximation to the truth that any correction which may hereafter be derived from the observations which are now, or may become, available shall not greatly exceed the probable errors of such corrections. It is, however, very desirable that one spheroid and one geodetic datum be used for the whole country. In fact, this is absolutely necessary if a geodetic survey is to perform fully the function of accurately coordinating all surveys within the area which it covers. This is the most important

function of a geodetic survey. To perform this function, it is also highly desirable that when a certain spheroid and geodetic datum have been adopted for a country they be rigidly adhered to, without change for all time unless shown to be largely in error.

In striving to attain the third object, the determination of the figure of the earth, the conditions are decidedly different. This problem concerns itself primarily with astronomic observations of latitude, longitude, and azimuth and with the geodetic positions of the points at which the astronomic observations were made, but is not concerned with the geodetic positions of other points fixed by the triangulations. The geodetic positions (latitudes and longitudes) of comparatively few points are therefore concerned in this problem. However, in marked contrast to the statements made in preceding paragraphs, it is desirable in dealing with this problem that with each new important accession of data, a new spheroid fitting the geoid with the greatest possible accuracy, and new values of the geodetic latitudes, longitudes, and azimuths of the highest degree of accuracy, should be derived.

The North American datum was adopted with reference to positions furnished for geographic purposes but has no reference to the problem of the determination of the figure of the earth. It is adopted with reference to the engineer's problem of furnishing standard positions and does not affect the scientist's problem of the determination of the figure of the earth.

The principles which guided in the selection of the datum to be adopted were: First, that the adopted datum should not differ widely from the ideal datum for which the sum of the station errors in latitude, longitude, and azimuth should each be zero; second, it was desirable that the adopted datum should produce minimum changes in the publications of the U. S. Coast and Geodetic Survey, including its charts; and, third, it was desirable, other things being equal, to adopt that datum which allowed the maximum number of positions already in the office files to remain unchanged, and therefore necessitated a minimum amount of new computation. These considerations led to the adoption, as the standard, of that datum which had been in use for many years in the northeastern group of States and along the Atlantic coast as far south as North Carolina.

An examination of the station errors of the astronomical stations so far reduced, scattered widely over the United States from Maine to Louisiana and to California, indicated that this datum approaches closely the ideal for which the algebraic sum of the station errors of each class would be zero.

The North American datum, upon which the positions and azimuths given in this publication depend, may be defined in terms of the position of the station Meades Ranch as follows:

 $\begin{array}{c} \circ & \prime & \prime \\ \phi = 39 & 13 & 26.686 \\ \lambda = 98 & 32 & 30.506 \\ \alpha \text{ to Waldo} = 75 & 28 & 14.52 \end{array}$

Points are then said to be upon the North American datum when they are connected with the station Meades Ranch by a continuous triangulation, through which the corresponding latitudes, longitudes, and azimuths have been computed on the Clarke spheroid of 1866, as expressed in meters, starting from the above data.

USE OF HORIZONTAL CONTROL DATA.

The plan or map for any extensive engineering project, whether or not map construction is the primary object, should have all of its parts properly correlated and should be on the same datum as adjacent surveys. Federal and State mapping organizations have long been aware of the necessity for having all surveys based upon a common datum, but the local engineers and surveyors in this country have too often in the past been content, and in many cases compelled, to use a local datum for their surveys. The future economic disadvantage of such a system is now becoming recognized, with the result that city and county surveys are being more generally placed upon a permanent basis by connecting them to stations on the North American datum.

One other factor must be taken into consideration by the engineer of to-day. As the States develop industrially they will undoubtedly follow the lead of one of the Eastern States, Massachusetts, which with splendid foresight has extended its triangulation control over the entire State for the purpose of defining property boundaries in terms of latitude and longitude. The advantage of such a system is well stated in the following extracts from the Report on the Maryland Oyster Survey:

The difficulties of accurately locating and permanently defining the boundaries of a farmer's plantation on land, even with the aid of monuments, public roads, streams of water, and other points of reference are often great, judging from the disputes frequently arising in connection with boundaries.

There is only one point on the earth's surface at the intersection of any one parallel of latitude and any one meridian of longitude, and therefore there can be no dispute as to the meaning of such a geographic definition of the location of a point, even though all the original triangulation station marks used in its determination, together with the chart on which its position was originally plotted, have been totally destroyed. In the case of the destruction of an original triangulation station mark, or any other

In the case of the destruction of an original triangulation station mark, or any other point defined by a geographic position, a competent geodetic engineer can reestablish its exact location by means of a new system of triangulation connecting with other distant triangulation marks which have not been destroyed.

In a section of the country covered by adequate geodetic control the data are available to the engineer for any of the following operations, in addition to its possible future use as a basis for cadastral surveys:

(1) Extensive mapping.—The topographer needs as initial data for beginning a topographic survey the distance and direction between two points and the geographic position of one of them, in latitude and longitude, on the North American datum. His local triangulation, based on this control, will prevent the accumulation of excessive errors as he carries on his mapping operations. In the event that the available precise triangulation in that region has lines of too great length to join to conveniently he can measure a base and azimuth at some place visible from a precise or a primary triangulation station and connect his base to the station by triangulation, thus obtaining proper geographic positions for his local surveys. Instructions for secondary (formerly called tertiary) triangulation,

Instructions for secondary (formerly called tertiary) triangulation, suitable for the control of local surveys, may be found in U. S. Coast and Geodetic Survey Special Publication No. 26, which can be had at a nominal cost from the Superintendent of Documents, Government Printing Office, Washington, D. C.

Printing Office, Washington, D. C. (2) Boundary lines.—If it is desired to locate or to delimit accurately and permanently the boundaries of political subdivisions, such as States, counties, or cities, the methods indicated in the preceding paragraph may be followed. Whenever possible, a line of the adjusted triangulation should be used as a basis for local surveys rather than a point, since a line gives the three essentials of position, length, and direction.

(3) Local intensive surveys.—The necessity for such surveys arises most frequently in connection with extensive improvements over a considerable area, or as a basis for the modern "city planning," where the needs of a city are being anticipated for a number of years. Here the requirements are somewhat different from those in the two preceding operations, for it is often necessary to extend precise or primary control in considerable detail over the entire area affected, secondary triangulation or traverse then being used to furnish additional points for the survey. In such a control survey the triangulation should invariably be started from a line of adjusted triangulation on the North American datum.

In local surveys where the area is of limited extent it is usually desirable to use a system of plane coordinates, the origin being connected to some point of the precise or primary triangulation scheme. Tables for computing plane coordinates are found in U. S. Coast and Geodetic Survey Special Publication No. 71.

The U. S. Coast and Geodetic Survey will be glad to give advice on any problem arising out of the use of its control points or on any proposed extension of triangulation from them.

EXPLANATION OF TABLES.

ARRANGEMENT OF TABULATED DATA.

In the tables of positions the latitude and longitude of each point are given on the North American datum (see p. 7); also the length and azimuth of each line observed over, whether in one way or both ways, to other points of the triangulation. No LENGTHS OR AZI-MUTHS ARE REPEATED, AND FOR A GIVEN LINE THE LENGTH AND AZIMUTH WILL BE FOUND OPPOSITE THE POSITION OF ONE OR THE OTHER OF THE TWO STATIONS INVOLVED.

The distances between stations are given in both meters and feet. To facilitate further the use of the tables, a column is given of the logarithms of the lengths in meters. It must be remembered that it is the logarithm of the length in meters which is derived first in the computation, the lengths in meters given in this table being derived from the corresponding logarithm and the lengths in feet in turn derived from the lengths in meters by the aid of the conversion tables on pages 33-40. Where further work of considerable extent is contemplated, an accumulation of error in the last two operations can be avoided by using the logarithm.

EXPLANATION OF LENGTHS.

The lengths, as explained in the discussion of the adjustments (see p. 11), depend upon the adjusted lengths of the lines Ogden-Pilot of the thirty-ninth parallel triangulation, and Larch-Red of the California-Washington arc, and upon the measured length of the Stanfield base. The lengths as given in the tables are all reduced to sea level. If the actual length of a line simply reduced to the horizontal is desired—that is, its length in its actual elevation on the surface of the earth—it may be obtained by adding to the sea level length as given a correction = (length of line as given) times

$\begin{bmatrix} \frac{\text{mean elevation of the two ends of the line in meters}}{6 370 000} \end{bmatrix}$

The maximum value of this correction does not exceed $\frac{1}{2000}$ of the length of any line of the triangulation here published. The error introduced by the use of the above approximate formula does not exceed $\frac{670^{1000}}{670^{1000}}$ of the length of any portion of this triangulation.

AZIMUTH AND BACK AZIMUTH.

Because of the convergence of the meridians the azimuth and back azimuth of a line do not differ by exactly 180°, the amount of the divergence varying with the latitude and the difference of longitude of the two points. To illustrate from the tables, page 14, the azimuth from Oxford to Putnam is $177^{\circ} 53' 29''.64$, while the back azimuth, or the azimuth from Putnam to Oxford, is $357^{\circ} 52' 11''.08$.

The azimuths of the triangulation lines offer a very convenient and accurate means of testing the error of the magnetic needle on a surveyor's transit, and even the azimuth over such short distances as those between a station mark and its reference mark may be used for this purpose with fair accuracy, provided the distance is greater than 100 feet.

ACCURACY OF DATA INDICATED IN TABLES.

The rule followed in recent publications of this office has been to give latitudes and longitudes to thousandths of seconds for all points, the positions of which are fixed by fully adjusted triangulation. Points, the positions of which are given to hundredths of seconds only, are marked by footnotes as being without check (observed from only two stations) or checked by verticals only.

In the columns giving azimuths, distances, and logarithms of distances, the accuracy is indicated to a certain extent by the number of decimal places given, it being understood that in each case two doubtful figures are given. In some cases there is very little doubt of the correctness of the second figure from the right, while in a few cases some doubt may be cast on the third figure from the right.

HOW TO FIND THE DATA DESIRED.

Following the index at the back of this publication are four maps. The first is an index map showing all areas in the United States covered by published triangulation rigidly computed on the North American datum. Following that is an index map showing the triangulation stations in the area covered by this publication. The other two are detailed maps showing the scheme of triangulation plotted by latitudes and longitudes on a polyconic projection.

The second index map shows all the territory covered by this arc of triangulation, together with county boundaries and the names and approximate location of all points determined. From this can be obtained the names of all points in any portion of the area. Having thus found the names of the points desired, the tables may then be conveniently consulted by using the index at the end of this publication. In the appropriately headed columns opposite the name of each station are given the pages on which may be found its geographic position, description, and elevation above sea level, and the number of the detailed sketch showing the scheme of observed lines from that station.

RELATED PUBLICATIONS.

Engineers and others using the data given in this report for the control of maps and surveys will find it of help to have Special Publications Nos. 5, 8, and 71 of the U.S. Coast and Geodetic Survey. They may be obtained at a nominal cost from the Superintendent

of Documents, Government Printing Office, Washington, D. C. Special Publication No. 5 is entitled "Tables for a polyconic projection of maps based on Clarke's reference spheroid of 1866." This publication contains the necessary explanation of the method employed in constructing a polyconic projection, and also gives the values in meters of the degrees, minutes, and seconds of latitude and longitude for all latitudes.

Special Publication No. 8 is entitled "Formulæ and tables for the computation of geodetic positions." As the title of this publication implies, the data contained in it will enable one to compute the spherical coordinates for triangulation where the distances and angles are known.

Special Publication No. 71 is entitled "Relation between plane rectangular coordinates and geographic positions." This book contains tables which will facilitate the use by engineers of plane coordinates for local surveys.

The principal lists of geographic positions published on the North American datum throughout the United States, together with descriptions of stations, are contained in the following publication: of the U.S. Coast and Geodetic Survey and of other organizationss

Appendix 8 of the Report for 1888, positions in Connecticut. Appendix 8 of the Report for 1893, positions in Pennsylvania, Delaware, and Maryland.

Appendix 6 of the Report for 1901, positions and descriptions in Kansas and Nebraska.

Appendix 4 of the Report for 1903, positions and descriptions in Kansas, Oklahoma. and Texas.

Appendix 9 of the Report for 1904, positions and descriptions in California.

Appendix 5 of the Report for 1905, positions and descriptions in California. Appendix 5 of the Report for 1907, positions and descriptions in California. Appendix 5 of the Report for 1910, positions and descriptions in California. Appendix 5 of the Report for 1911, positions and descriptions in Nebraska, Minne-sota, North Dakota, and South Dakota.

Appendix 5 of the Report for 1911, positions and descriptions in Texas.

Appendix 6 of the Report for 1911, positions and descriptions in Florida. Special Publication No. 11, positions and descriptions in Texas, New Mexico,

Arizona, and California.

eve

to: tin

rs |

ľĿ:

dœ

102

nd t e Ŋ.

Ż

İT.

D! ·

(ť ter

96

Ŷî.

Ē

C

Ľ

ŗ

Special Publication No. 13, positions and descriptions in California, Oregon, and Washington.

Special Publication No. 16, positions and descriptions in Florida.

Special Publication No. 17, positions and descriptions in Fiorda. Special Publication No. 17, positions and descriptions in Colorado, Utah, Nevada, Special Publication No. 19, positions and descriptions in Colorado, Utah, Nevada, Wyoming, Montana, South Dakota, and North Dakota. Special Publication No. 24, positions and descriptions in Alabama and Mississippi. Special Publication No. 30, positions and descriptions in West Virginia, Ohio, Kentucky, Indiana, Illinois, and Missouri.

Special Publication No. 31, positions and descriptions in Oregon, Washington, and California.

Special Publication No. 43, positions in Georgia. Special Publication No. 45, descriptions in Georgia. Special Publication No. 46, positions and descriptions in Maine.

Special Publication No. 54, positions and descriptions in Texas. Special Publication No. 62, positions and descriptions in Rhode Island. Special Publication No. 70, positions and descriptions in Kansas. Special Publication No. 74, positions and descriptions in Idaho, Oregon, and Washington.

Special Publication No. 76, positions and descriptions in Massachusetts. Report on triangulation of Greater New York.

Report on a plan of severage for the City of Cincinnati. Appendix EEE, pages 2905–3031, Annual Report of the Chief of Engineres, U. S. Army, 1902, positions of points on and near the Great Lakes. Professional Paper No. 144, Corps of Engineers, U. S. Army, descriptions of points

on and near the Great Lakes. Publications of the Massachusetts Commission on Waterways and Public Lands.

Various bulletins of the United States Geological Survey.

	Latitude			•	Distance.		
Station.	and longitude.	Azimuth.	Back azimuth.	To station.	Log (meters).	Meters.	Feet.
Principal points.	• • • •	• , ,,	• , ,,				
Cache, 1897	42 11 09.402 113 39 37.544	305 52 42.13 15 09 35.58			5. 2652158 5. 1268066	184168.69 133908.02	
Oxford, 1897	42 16 11.766 112 05 49.972	351 20 05.13 50 36 14.43 86 23 27.06	229 17 18.29	Pilot Peak	5. 3333520		706864.4
Big Butte, 1915	43 23 47.288 113 01 18.580	328 32 55.09 21 27 03.65			5. 1649605 5. 1591658		
Big Butte refer- ence mark, 1915.1	43 23 47.262 113 01 18.464	107 05 04	287 05 04	Big Butte	0. 43457	2. 72	8,9
Putnam, 1915	42 54 49.648 112 07 46.056	357 52 11.08 57 46 47.58 126 45 38.56		Cache	5.1746207	71570. 62 149492. 96 90241. 73	490461.5
MiddleButte,1915.	43 29 27.969 112 44 15.303	322 10 21.84 65 32 29.72	142 35 20.57 245 20 46.07				
Middle Butte reference mark, 1915.1			81 53 55	Middle Butte .	0. 62428	4. 21	13.8
Caribou, 1915	43 05 37.440 111 18 39.407	34 25 16.52 73 36 19.32 111 21 35.72	253 02 49.55	Putnam	4.8430413	111925. 10 69669. 27 123908. 40	228573.3
Caribou reference mark, 1915.1	43 05 37.142 111 18 39.498		12 37 09	Caribou	0.97451	9.43	30, 9
Kimama, 1915	42 50 49.583 113 57 26.397		51 36 13.35 161 43 21.16	Big Butte Cache	4. 9893370 4. 8886841	97574.64 77389.88	
Kimama reference mark, 1915. ¹	42 50 49.267 113 57 26.357		354 39	Kimama	0. 99078	9. 79	32, 1
Picabo, 1915	43 16 50.968 114 09 14.915	341 26 36.62	82 25 25.71 161 46 42.79 161 39 47.69	Cache	5.1077858		420503.8
Picabo reference mark, 1915. ¹	43 16 50.783 114 09 14.853		346 13	Picabo	0. 76938	5, 88	19, 3
Flat, 1915	42 43 48.702 114 24 52.624	199 03 28.85 250 42 09.32 314 00 19.56	71 00 47.60	Picabo Kimama Cache	4.5977603	39605.94	129940.5
Flat reference mark, 1915.1	114 24 52.732		135 33	Flat	0. 54531	3. 51	11.5

GEOGRAPHIC POSITIONS.

¹ No check on this position.

٠

GEOGRAPHIC POSITIONS-Continued.

	Latitude		Dech		Distance.		
Station.	and longitude.	Azimuth.	Back azimuth.	To station.	Log (møters).	Meters.	Feet.
Principal points— Continued.	• • •	• / //	• , ,,				
Green, 1915	43 12 51.263 114 54 42.307	262 53 06.37 322 48 22.59	83 24 15.06 143 08 42.53	Picabo Flat	4. 7921968 4. 8283508	61972, 19 67352, 05	203320.4 220970.8
Green reference mark, 1915. ¹	43 12 51.286 114 54 42.367	298 05	118 05	Green	0. 18752	1. 54	5.1
Camas, 1915	43 14 57.954 115 26 00.591	267 38 19.00 275 05 29.47 304 25 07.81	88 30 55.68 95 26 56.00 125 06 48.93	Picabo Green Flat	5. 0167434 4. 6290466 5. 0049816	103930. 60 42564. 41 101153. 66	340979.0 139646.7 331868.3
Camas reference mark, 1915. ¹	43 14 58, 181 115 26 00, 791	327 10	147 10	Camas	0.92117	8. 34	27.4
Blue, 1915	42 41 15.461 115 22 56.985	176 12 11.16 213 07 54.47 266 15 33.18	356 10 06.01 33 27 09.18 86 54 56.55	Camas Green Flat	4. 7962256 4. 8450189 4. 9000168	62549. 75 69987. 24 79435. 89	205215.3 229616.5 260615.9
Blue reference mark, 1915.1	42 41 15.301 115 22 57.138	215 16 26	35 16 26	Blue	0.78032	6.03	19.8
Mountain Home, 1915.	43 07 44.382 115 41 36.050	237 33 38.75 332 31 17.89	57 44 18.99 152 43 59.79	Camas Blue	4. 3980229 4. 7420413	25004. 77 55213. 00	82036.5 181144.7
Mountain Home reference mark, 1915.1	43 07 43.952 115 41 37.255	244 02 53	64 02 54	Mountain Home.	1. 48130	30. 29	99.4
Silver, 1915	42 58 51.394 116 39 24.485	252 54 20.34 257 50 12.71	73 44 30.34 78 29 40.65	Camas Mountain Home.	5. 0167672 4. 9041598	103936. 29 80197. 31	340 997.6 263114.0
		286 55 56.66	107 47 55.70	Blue	5.0380822	109164. 70	358151 . 2
Silver reference mark, 1915. ¹	42 58 51.046 116 39 24.286	157 13 56	337 13 56	Silver	1.06558	11.63	38. 2
Shafer, 1915	43 46 19.294 116 05 17.387	317 24 57.73 334 18 35.90 27 51 57.78	137 52 00.39 154 47 35.98 207 28 31.81	Camas Blue Silver	4. 8952679 5. 1252052 4. 9966744	78572.02 133415.17 99237.18	257781.7 437712.9 325580.6
Shafer reference mark, 1915. ¹	43 46 19.164 116 05 17.755	244 02 32	64 02 32	Shafer	0.96142	9.15	30.0
Squaw, 1915	44 01 59.410 116 24 40.335	318 04 36.08 9 43 36.70	138 18 02.52 189 33 27.99	Shafer Silver	4. 5902705 5. 0740070	38928.76 118578.80	127718.8 389037.3
Squaw reference mark, 1915. ¹	44 01 59.575 116 24 40.434	336 39 23	156 39 23	Squaw	0. 74507	5.56	18.2
N y 888, 1915	43 52 25.950 116 58 47.747	248 36 41,83 278 39 18,12 345 06 47,73	69 00 22.89 99 16 21.10 165 20 07.42	Squaw Shafer Silver	4. 6898679 4. 8610937 5. 0111344	48962, 99 72626, 27 102596, 93	160639. 4 238274. 7 336603. 4
Nyssa, reference mark, 1915. ¹	43 52 26.212 116 58 47.983	326 53 59	146 53 59	Nyssa	0.98498	9.66	31.7
Iron, 1915	44 33 03.614 117 01 40.174	319 14 36.26 357 04 14.68	139 40 26.44 177 06 14.93	Sq uaw Nyssa	4. 8791878 4. 8770066	75716.02 75336.70	248411.6 247167.2
Iron reference mark, 1915.1	44 33 03.993 117 01 39.595	47 32 11	227 32 11	Iron	1.23830	17.31	56. 8
Dry, 1916	44 10 09.309 117 39 40.845	229 45 06.82 278 09 15.85 300 45 22.79	50 11 41.41 99 01 27.96 121 13 47.55	Iron. Squaw Nyssa	4. 8192525 5. 0053347 4. 8043779	65955. 73 101235. 94 63734. 99	216389. 8 332138. 2 209103. 9
Dry reference mark, 1916. ¹	44 10 09.800 117 39 41.578	312 58 49	132 58 50	Dry	1. 34733	22, 25	73.0
Beaver, 1916	44 35 59.517 117 47 00.282	274 54 15.51 848 27 58.42	95 26 04.63 168 33 05.79	Iron Dry	4. 7800329 4. 6886683	60260.53 48827.93	197704.8 160196.3
Beaver reference mark, 1916. ¹ ¹ No check on th	44 35 59.593 117 46 59.542	81 47 19	261 47 18	Beaver	1.21696	16.48	54.1

¹ No check on this position.

,

GEOGRAPHIC POSITIONS—Continued.

	Latitude		Dub		Distance.		
Station.	and longitude.	Azimuth.	Back azimuth.	To station.	Log (meters).	Meters.	Feet.
Principal points— Continued.	• , ,,	• • •	• , ,,				
Maxwell, 1916	44 51 43.633 118 05 19.532	291 58 41.90	112 43 28.78 140 24 53.27	Beaver	4.9586077 4.5783373 4.9250985	37873.66	298257.8 124257.2 276110.3
Maxwellreference mark, 1916.1	44 51 43.899 118 05 19.778	326 37 15	146 37 15	Maxwell	0.99211	9.82	32.2
Medical, 1916	45 04 48.927 117 30 58.690	326 31 26.13 21 40 43.54 61 58 33.56	201 29 25.48	Beaver	4. 8473944 4. 7589919 4. 7097375	57410.58	230875.9 18835 4.5 1681 59.6
Medical reference mark, 1916.1	45 04 47.987 117 31 01.206		62 11 07	Medical	1. 79386	62.21	204.1
Fanny, 1916	45 18 30.006 117 43 45.426	326 29 16.58 3 07 27.90 29 50 32.37	146 38 20.58 183 05 10.22 209 35 15.93	Beaver	4. 4825066 4. 8967901 4. 7566127		99653.1 258686.8 1873 25 .5
Fanny reference mark, 1916.1	45 18 29.833 117 43 45.711	229 12 01	49 12 01	Fanny	0.91 3 55	8.195	26.89
Powder, 1916	44 55 47.749 118 09 32.651	218 39 10.64 323 35 01.81		Fanny Maxwell	4. 7321040 3. 9713318		177046.9 30712.6
Powder reference mark, 1916.1	44 55 47.827 118 09 32.841	299 56 19	119 56 19	Powder	0.68215	4. 81	. 15.8
Emily, 1916	45 26 06.888 118 05 38.527	296 08 32.42 359 37 29.46 5 13 26.09	179 37 42.93	Maxwell	4. 5033172 4. 8041057 4. 7512039	63695.06	104 544.5 208972.9 185006.9
Emily reference mark, 1916. ¹	45 26 07.422 118 05 37.462	54 32 19	234 32 18	Emily	1. 45347	28.41	93.2
La Grande, 1916	45 19 49.467 118 05 39.346	180 05 15.10 274 46 10.50	0 05 15.68 95 01 44.74	Emily Fanny	4. 0663876 4. 4582264		38227. 1 94234. 6
La Grande refer- ence mark No. 1, 1916. ¹	45 19 49.190 118 05 37.094	99 53 24	279 53 23	La Grande	1.69714	49.79	16 3. 4
La Grande refer- ence mark No. 2, 1916. ¹	45 19 51.907 118 05 41.345		149 58 17	La Grande	1.93952	87.00	285. 4
La Grande refer- ence mark No. 3, 1916. ¹	45 19 49.439 118 05 38.864		274 46 11	La Grande	1.02263	10.535	34.56
Birch, 1916	45 24 13.236 118 37 14.546	264 56 51.25 325 15 20.13	85 19 21.73 145 34 58.70	Emily Powder	4. 6167119 4. 8058181	41372.51 63946.69	135736. 3 209798. 4
Birch reference mark, 1916. ¹	45 24 13.452 118 37 14.597		170 31 29	Birch	0. 83059	6. 77	22, 2
Big Hill, 1916	45 35 59.885 118 31 45.699	298 08 04.40 338 32 55.12 18 09 13.05	118 26 42.53 158 48 42.09 198 05 18.49	Powder	4.9027393	79935.43	126733. 1 262254. 8 75309. 8
Big Hill reference mark, 1916. ¹	45 36 01.784 118 31 45.202		190 24 13	Big Hill	1.77539	59.62	195.6
Alicali (U.S.G.S.), 1916.	45 32 04.100 119 05 07.743	260 17 00.07 291 37 57.64	80 40 49.68 111 57 50.42	Big Hill Birch	4. 6436598 4. 5926882	44020.99 39146.07	
Alkali reference mark, 1916.1	45 32 04.097 119 05 07.597	91 43	271 43	Alkali	0. 49969	3.16	10.4
Laurila, 1916	45 49 14.589 118 57 43.700	305 54 05.79 329 59 46.65 16 51 08.21	150 14 25.03	Birch	4. 6199825 4. 7280138 4. 5215896	53458.14	136762.4 175387.2 109037.0
Job, 1916	45 38 45.095 119 18 24.543	233 57 25.12 305.33 09.25	54 12 13.69 125 42 38.45	Laurila Alkali	4. 5202003 4. 3273666	33128.39 21250.38	108688.7 69719.0

¹ No check on this position.

-

•

GEOGRAPHIC POSITIONS-Continued.

	Latitude					Distance.	
Station.	and longitude.	Azimuth.	Back azimuth.	To station.	Log (meters).	Meters.	Feet.
Principal points- Continued.		• • "					
Job reference mark, 1916. ¹	45 38 46.294 119 18 24.512	10 23 41	190 23 41	Job	1.57576	37.65	123.5
Expansion (Wash.), 1916.	45 57 35.490 119 19 13.808	298 56 39.13 338 46 06.22 358 14 56.65	158 56 12.23	Laurila Alkali Job	4.5027763 4.7049511 4.5430224	50693.36	104414. 4 166316. 5 114553. 0
Expansion refer- ence mark (Wash.), 1916. ¹	45 57 35.507 119 19 14.426	273 38 10	93 38 10	Expansion	1.12467	13. 325	43. 72
Stanfield west base, 1916.	45 46 38.572 119 30 36.269	215 54 12.46 312 39 10.58	36 02 22.30 132 47 54.38	Expansion Job	4. 3989889 4. 3333427	25060, 45 21544, 81	82219.2 70684.9
Stanfield west base reference mark, 1916. ¹	45 46 39.306 119 30 36.357	355 10 54	175 10 54	Stanfield west base.	1.35679	22.740	74.61
Stanfield east base, 1916.	45 46 18.955 119 17 48.609	3 10 43.00 92 10 03.98		Job Stanfield west base.	4. 1471758 4. 2200209	14033.82 16596.668	46042.6 54450.90
		174 58 49.10	354 57 47.95	Expansion	4.3215578	20968.04	68792.6
Stanfield east base reference mark No. 1, 1916. ¹	45 46 18.366 119 17 48.727	187 56 54	7 56 54	Stanfield east base.	1.26399	18.365	60.25
Stanfield east basc reference mark No. 2, 1916. ¹	45 46 18.763 119 17 48.134	120 03 22	300 03 22	Stanfield east base.	1.07372	11.850	38.88
Echo, 1916	45 44 38.385 119 11 20.222	40 07 46.36 110 20 19.99	220 02 42.70 290 15 41.75	Job. Stanfield east base.	4. 1540192 3. 9518055	14256.71 8949.64	46773.9 29362.3
Echo reference mark, 1916. ¹	45 44 38.674 119 11 20.068	20 28 14	200 28 14	Echo	0.97909	· 9 . 530	31. 27
Alder (U.S.G.S.) (Wash.), 1916.	45 51 00.583 119 56 22.229	255 32 07.33 294 31 58.83	75 58 47.77 114 59 10.30	Expansion Job	4. 6951027 4. 7341415	49556.74 54217.75	162587.4 177879.4
Alder reference mark (Wash.), 1916.1	45 51 00.753 119 56 21.389	73 48 54	253 48 53	Alder	1.27600	18.88	61.9
Ella, 1916	45 34 17.518 119 46 41.429	157 58 37.33 219 21 19.96 257 10 11.07	837 51 41.58 89 41 00.49 77 30 23.64	Alder Expansion Job	4.5239980 4.7477998 4.5761913	55949.96	109643.3 183562.5 123644.7
Ella reference mark, 1916. ¹	45 34 17.819 119 46 41.421	1 01 01	181 01 01	Ella	0.96848	9. 300	30. 51
Toby (U. S. G. S.), 1916.	45 31 20.033 120 08 36.102	203 28 13.64 258 59 38.61	23 36 58.75 79 15 17.06	Alder Ella	4. 5994144 4. 4630123	39757. 07 29041. 05	130436. 3 95278. 8
Toby reference mark, 1916.1	45 31 20.275 120 08 36.174	348 13	168 13	Toby	0. 88252	7.63	25.0
Montgomery (U. S.G.S.)(Wash.), 1916.	45 48 21. 792 120 18 12. 439	260 02 05, 38 302 18 34, 16 338 21 47, 43	80 17 45.14 122 41 07.30 158 28 39.66	Alder Ella Toby	4. 4579173 4. 6858798 4. 5304920	28702, 34 48515, 42 33922, 82	94167.6 159171.0 111295.1
Montgomery ref- erence mark (Wash.), 1916.1	45 48 21, 552 120 18 12, 057	132	312	Montgomery	1. 04497	11. 091	36, 39
John, 1916	45 24 06.690 120 36 08.470	207 19 34.79 249 23 52.54	27 32 23.64 69 43 30.33	Montgomery Toby	4. 7042787 4. 5833204		166059.2 125691.1
John reference mark No. 1, 1916. ¹		359 57 42	179 57 42	John	2. 14373	139. 23	456.8

¹ No check on this position.

53905°---21-----2

GEOGRAPHIC	POSITIONS	-Continued.
------------	-----------	-------------

	Latitude				Distance.		
Station.	and longitude.	Azimuth.	Back azimuth.	To station.	Log (meters).	Meters.	Feet.
Principal points							
John reference mark No. 2, 1916.	45 24 10.913 120 36 15.557		130 13 27	John	2. 30509	201.88	662. 3
Maryhill (U. S. G. S.)(Wash.),1916.	45 44 26.781 120 43 46.773		118 11 24.93	Montgomery Toby John	4. 5306524 4. 7140780 4. 5905801	51769.98	111336. 2 169848. 7 127809. 8
Maryhill reference mark (Wash.), 1916. ¹	45 44 27.176 120 43 46.780		179 18 46	Maryhill	1.08565	12.180	39. 96
Stacker (Wash.), 1916.	45 42 50.650 121 06 00.397	263 59 28.82 311 34 53.32	84 15 23.73 131 56 12.69	Maryhill John	4. 4622498 4. 7168479	28990. 11 52101. 22	95111.7 170935.4
Stacker reference mark (Wash.), 1916. ¹	45 42 50.905 121 06 00.673		142 49	Stacker	0. 99476	9.88	32, 4
Lookout, 1916	45 20 34.650 121 31 23.837		38 51 49.78 54 46 59.89 85 08 35.43	Stacker Maryhill John	4. 7231208 4. 8815949 4. 8599726	76136.84	17 3422. 3 249792. 3 287 660. 4
Lookout reference mark, 1916.1	45 20 35.037 121 31 23.742	9 46 44	189 46 44	Lookout	1.08386	12, 13	39. 8
Chinidere, 1916	45 35 12.306 121 48 39.343		358 56 31.90 75 55 41.91	Stacker	4. 3494121 4. 5882886 4. 7573039 4. 5467495	57187.87	73349.4 127137.2 187623.9 115540.4
Chinidere refer- ence mark, 1916.	45 35 11,883 121 48 39.052		334 10 32	Chinidere	1. 16137	14. 50	47.6
Huckle (Wash.), 1916.	45 53 08.624 121 42 13.751	291 54 19.66 346 47 45.74 14 07 18.56 37 25 34.20 121 28 43.52	166 55 30.20 194 02 42.42 217 09 06.90	Lookout Chinidere Larch	4. 7047048 4. 7920196 4. 5347838 4. 6923608 4. 0242390	61946. 90 34259. 72 49244. 85	166222. 2 203237. 5 112400. 4 161564. 1 34691. 5
Huckle reference mark (Wash.), 1916. ¹	45 53 07.932 121 42 12.676		312 39 46	Huckle	1. 49872	3 1. 53	103.4
Supplementary points.							
Oxford north base, 1915.	42 16 07.490 111 58 58.296	90 50 23.0	270 45 46.1	Oxford	8. 974764	9435. 5	30956.3
Oxford south base, 1915.	42 15 12 153 111 58 59 493		281 01 25.1 0 55 14.8	Oxford Oxford north base.	3. 981655 3. 232391	9586.4 1707.618	3145 1. 4 5602. 4
Oxford railroad station, south gable, 1915.			270 47 02.4 85 20 40.8	Oxford Oxford north base.	3.973099 1.559545	9399.4 36.3	30837.9 119.1
		359 42 25.0	179 42 25.3	Oxford south base.	3, 231591	1704.5	5592, 2
Bonida iron ele- vator, north ga- ble, 1915.	42 13 41.386 111 59 00.035	180 15 14.3	296 14 19.1 0 15 14.7	Oxford south base.	4. 020893 3. 447255	10480, 8 2800, 6	34385.8 9188,3
Precise level B.	42 16 07. 548	180 30 23.1 347 42 15	0 30 24.3 167 42 15	Oxford north base. Oxford north	3.654000 0.23805	4508.2 1.73	14790.7 5.7
M. E., 1915.1 Henry, 1915	111 58 58.312 42 55 16.083	89 27 36, 86		base.	4, 7729309		
Henry (U. S. G.	111 24 12, 540 42 55 16, 158	201 28 45.39	21 30 32.61 150 51 37		4. 3140094 0. 64345		67607.3
S.), 1915.1 Woodall, 1915	111 24 12, 634 42 45 09, 778 111 31 06, 002	109 54 36 31		Putnam Caribou Henry			
l No check on th		204 00 42.22 206 36 52.24	26 41 33.36	Henry	4. 3208124	20932.08	68674.7

¹ No check on this position.

,

GEOGRAPHIC POSITIONS-Continued.

	Latitude				Distance.		
Station.	and longitude.	Azimuth.	Back azimuth.	To station.	Log (meters).	Meters.	Feet.
Supplementary points-Con.							
Woodall (U. S. G. S.), 1915. ¹	42 45 09.664 111 31 06.037	192 49 13	0 / // 12 49 13	Woodall	0. 55751	8.61	11.8
Stump, 1915	42 54 06.635 111 11 21.129	97 03 01.17 155 04 10.31	276 54 15.94 334 59 11.41	Henry Caribou	4. 2462222 4. 3713583	17628. 78 23515. 72	57837. 1 77151. 2
Caribou (U. S. G. S.), 1915. ¹	43 05 37.522 111 18 39.3 92	7 37 05	187 37 05	Caribou	0.40654	2. 55	8,4
Teton Peak, 1915 2	43 44 32, 13 110 48 04. 41	29 59 10 49 56 52	209 38 09 229 02 11	Caribou Putnam	4. 919280 5. 151343	83039 141691	272437 464865
Putnam (U. S. G. S.), 1915. ¹	42 54 49. 499 112 07 45. 923	146 46 59	326 46 59	Putnam	0. 74036	5. 50	18.0
Blackfoot B. M. Q ₆ , 1915.	43 09 31.276 112 22 39.390			Big Butte Middle Butte.	4. 7678082 4. 6728246	58587. 93 47078. 72	192217. 2 154457. 4
Precise level B. M. Q ₆ , 1915. ³	43 09 31.303 112 22 39.325	60 48 05	240 48 05	Blackfoot B. M. Q ₆	0, 22789	1.69	5. 5
Middle Butte (U. S. G. S.), cairn, 1915.1	43 29 28.038 112 44 15.297	3 41	183 41	Middle Butte.	0. 32634	2, 12	7.0
Little Butte (U. S. G. S.), cairn, 1915. ²	43 29 51.91 112 39 50.30	68 53 40 82 57 06	248 38 54 262 54 03	Big Butte Middle Butte.	4. 492439 3. 778143	31077.0 5999.9	101958, 5 19684, 7
Jacob Gohl's ranch house, 1915. ³	43 25 58 32 112 50 53 33	74 01 15 234 05 34	253 54 05 54 10 08	Big Butte Middle Butte.	4. 165438 4. 043046	14636.5 11042.0	48019.9 36227.0
Big Butte (U. S. G. S.), cairn, 1915.1	43 23 47.263 113 01 19.725	256 41 01	76 41 01	Big Butte	0. 52504	3. 35	11,0
Dietrich stand- pipe, 1915.1	42 54 55.99 114 15 51.19	30 54 03 192 24 58	210 47 55 12 29 29	Flat Picabo	4. 379932 4. 618645	23984.6 41557.1	78689, 5 136341, 9
Green (U. S. G. S.), cairn, 1915. ¹	43 12 51.338 114 54 42.278	15 53	195 53	Green	0. 38021	2.40	7.9
Camas (U.S.G.S.), cairn, 1915.1	43 14 57.838 115 26 01.375	258 35 07	78 35 08	Camas	1.25648	18.05	59.2
Precise level B.M. M4, 1915.1	43 07 54.161 115 41 42.493	334 14 16	154 14 21	Mountain Home.	2. 525162	335. 09	1099.4
Mitchell, 1915	43 46 15.043 117 10 44.769	234 23 15.38 244 26 45.50 269 32 13.44	54 31 31.86 64 58 42.44 90 17 30.37	Nyssa Squaw Shafer	4. 2942909 4. 8339845 4. 9436789	19692.05 68231.44 87837.29	64606.3 223856.0 288179.5
Mitchell reference mark, 1915.1	43 46 15.215 117 10 45.113	303 03 17	123 03 17	Mitchell	0.96237	9. 17	30. 1
Idsho-Oregon boundary mon- ument, 1915.	43 43 22 433 117 01 33 651	113 25 04.83 192 27 05.50	293 18 43.75 12 29 00.33	Mitchell Nyssa	4. 1281596 4. 2350163	13 432. 59 17179. 73	44070, 1 56363, 8
B. M . G, 1915	43 52 31.742 116 59 28.724	281 03 02.55 52 29 01.48	101 03 30.95 232 21 13.37	Nyssa Mitchell	2. 9694996 4. 2801862	932. 18 19062. 78	3058.3 62541.8
Precise level B. M. G, 1915.1	43 52 42.642 116 59 28.690	0 07 39	180 07 39	в. м. с	2. 526869	336. 41	1103, 7
B. M. G reference mark, 1915.1	43 52 31.118 116 59 28.764	182 39 19	2 39 19	в. м. с	1.28511	19.28	63. 3
Mitchell(U.S. G. S.), cairn, 1915. ¹	43 46 15.302 117 10 44.369	48 08 17	228 08 17	Mitchell	1.07918	12.0	39, 4
Pressure stand- pipe, 1915. ¹	43 49 53.10 117 02 09.02	59 46 36 223 36 00	239 40 39 43 38 19	Mitchell Nyssa	4. 125469 3. 814021	13349.6 6516.6	43797.8 21379,9

¹ No check in this position. ² Checked by vertical angles only.

GEOGRAPHIC POSITIONS-Continued.

	Latitude				Distance.		
Station.	and longitude.	Asimuth.	Back azimuth.	To station.	Log (meters).	Meters.	Fest.
Supplementary points-Con.							
Nyssa standpipe, 1915.	• / // 43 52 32.220 116 59 38.082	o , " 274 02 57.8 279 45 58.5 52 03 38.7	94 03 04.3 99 46 33.4 231 55 57.1	B. M. G Nyssa Mitchell	2.321141 3.057050 4.276613	209. 5 1140. 4 18906. 6	687.3 3741.5 62029.4
Castle Rock Butte, 1916.1	44 01 16.94 118 10 57.19	206 12 59 248 19 49	26 29 43 68 41 35	Beaver Dry	4. 855743 4. 651821	71737.0 44856.1	235357.1 147165.4
Dry (U.S. G. S.), cairn, 1916. ¹	44 10 09.206 117 39 40.930	210 47 10	30 47 10	Dry	0. 56820	3 . 7 0	12.1
Iron (U. S. G. S.), 1915.1	44 33 04.741 117 01 39.166	32 35 31	212 35 30	Iron	1. 61595	41.30	135.5
Granite, 1916	45 08 08. 179 117 29 58. 267	329 58 30.8 12 07 34.3 20 44 57.4	150 18 28.2 192 06 51.5 209 32 56.3	Iron Medical Beaver	3.798734	74908. 5 6291. 2 63623. 0	245762.3 20640.4 208736.5
Bennet, 1916 ¹	45 02 19.67 117 23 40.74	331 42 09 115 43 24	151 57 39 295 38 14	Iron Medical	4. 788799 4. 026633	61 489. 2 10632. 4	201735.8 34883.1
Rock Creek Moun- tain, cairn, 1916.			348 24 42.1 55 54 44.5 135 33 25.9	Maxwell Medical Beaver	4. 726367	5877.6 53255.8 32812.2	19283.4 174723.4 107651.4
Ireland Mountain, lookout cupola, 1916.	44 50 14.508 118 19 11.299		51 02 54.8 81 30 56.7 122 01 40.3	Powder Maxwell Beaver	4. 213333 4. 266500 4. 699215	16343. 0 18471. 4 50028. 2	53618.7 60601.6 164134.2
Tower, 1916	45 03 17.797 118 33 46.925	182 29 01.08 220 53 47.87 246 27 01.97 293 25 09.90	41 13 46.85 67 02 31.09	Emily Fanny	4. 7486174	60630. 10 56055. 39 71326. 34 34754. 02	198917.3 183908.4 234009.8 114022.1
Fanny (U.S.G.S.), cairn, 1916.1	45 18 30.115 117 43 45.194	56 28 17	236 28 17	Fanny	0. 78319	6.07	19.9
Precise level B.M. 2782A, cor. Foley H o t e l, L a Grande, 1916. ¹	45 19 47.305 118 05 48.136	196 00 08.3	16 00 14.6	La Grande	1. 84155	69. 4 3	227.8
La Grande Astro-	45 19 51.942 118 05 41.196	71 40 83	251 40 33	La Grande ref- erence mark No. 2.	0. 53445	3, 42	11,2
State Forestry Service lookout tower, north- west corner, 1916 ¹	45 26 06.217 118 05 37.264	127 02	807 02	Emily	1. 53656	34.4	112.9
Arbuckle, 1916 ¹	45 11 38.50 119 15 05.19	198 54 23 231 09 21	19 01 28 51 40 12	Alkali Big Hill	4. 602149 4. 859344	40008. 2 72334. 2	131260.2 237316.5
Echo Catholic Church spire, 1916.	45 44 25.314 119 12 01.861	38 17 11.8 115 07 20.1	218 12 38.0 295 03 11.7	Job Stanfield east base.	4.126290 3.917756	13374. 9 8274. 8	43880.8 27148.2
		245 50 51.3	65 51 21.2	Echo		986.5	3236.5
	119 20 53.346		21 49 52.4	Expansion		5768.9	18926.8
	119 19 29.397	183 51 56.6	257 54 01.7 3 52 07.8	Gate Expansion	3.267244 3.697169	1850. 3 4979. 3	6070.5 16336.3
43 R (U. S. E.) (Wash.), 1916.			178 22 58.6 214 41 15.0	Gravel Gate	3.330201 3.487407	2139.0 3071.9	7017.7 10078.4
44 L (U. S. E.), 1916.	45 55 55, 174 119 18 45, 133	27 00 55.2 50 44 47.3 104 45 35.2	207 00 23.4 230 43 15.2 284 45 01.4	Gravel Gate 43 R (U.S.E.).	3.552491	2100, 1 3568, 5 1048, 6	6890.1 11707.7 3440.3
Concrete gate- house, north- west corner, 1916.1	45 54 41.987 119 20 53.299	135 07	315 07	Gate	0. 16137	1.45	4.8
					1		

¹ No check on this position.

1

V.

.

λ

GEOGRAPHIC POSITIONS—Continued.

	Latitude	,			Distance.		
Station.	and longitude.	Azimuth.	Back azimuth.			Meters.	Feet.
Supplementary points-Con.		• , , ,					
Umatilla stand- pipe, 1916.	• , , , , , , , , , , , , , , , , , , ,	• , , , 205 29 50.8 225 54 57.3 242 29 59.0 282 53 45.8 358 11 05.7	• , ,, 25 31 03.2 45 55 56.5 62 31 32.0 102 54 47.0 178 11 06.6	43 R (U.S.E.). 44 L (U.S.E.). Gravel	3. 702322 3. 392590 3. 497349 3. 274685 2. 907600	5038.7 2469.4 3143.0 1882.3 808.4	16531. 1 8101. 7 10311. 7 6175. 5 2652. 2
Umatilla high school flagpole, 1916.	45 55 01.688 119 20 11.541	56 01 27.9 194 40 18.0 203 50 07.9 283 35 32.2	236 00 57.9 14 40 59.5 23 50 36.2 103 36 02.5	43 R (U.S.E.).	3. 036030 3. 690947 3. 321677 2. 970543	1086.5 4908.5 2097.4 934.4	3564.6 16104.0 6881.2 3065.6
North (Wash.), 1916.	45 40 58.980 120 56 13.710	105 15 15.4 248 16 03.8	285 08 15.5 68 24 58.4		4. 119017 4. 240129	13152.8 17383.2	43152.1 57031.4
South, 1916	45 38 04.934 120 56 08.801	178 52 02.7 233 38 24.1	358 51 59.2 53 47 14.9	North Maryhill	8. 730332 4. 299284	5374.4 19919.8	17632. 5 65353. 5
West (Wash.), 1916.	45 40 12.991 120 59 06.468	249 11 22.7 315 45 55.7	69 13 26.3 135 48 02.7		3.602009 3.741647	3999.5 5516.3	13121.7 18098.1
East (Wash.), 1916.	45 40 10.960 120 55 50.323	5 52 22.5 90 51 56.3 161 09 04.2	185 52 09.3 270 49 36.0 341 08 47.5	South West North	3.627997	3911.4 4246.2 1566.6	12832.7 13931.1 5139.8
148 L (U. S. E.), 1916.	45 39 07.044 120 56 55.300	125 39 10.2 215 28 38.4	305 37 36.4 35 29 24.9	West East	3.543342 3.384417	3494. 2 2423. 4	11463.9 7950.8
149 L ecc. (U. S. E.), 1916.	45 38 52.059 120 57 48.670	146 01 26.4 226 26 07.4 248 10 35.6	326 00 30.8 46 27 32.1 68 11 13.8	West East 148 L (U.S.E.).	3. 479048 3. 548434 3. 095106	3013. 3 3535. 4 1244. 8	9886. 1 11599. 1 4084. 0
149 L (U. S. E.), 1916.	45 38 52.182 120 57 48.813	320 55 02.6 248 23 30.0	140 55 02.6 68 24 08.3	149 L ecc. (U. S. E.) 148 L (U.S.E).	0.69020 3.095616	4.90 1246.3	16.1 4088.9
Fallbridge stand- pipe (Wash.), 1916.	45 39 24.641 120 57 57.127	134 50 46.5 242 28 15.2 349 40 55.4	314 49 56.9 62 29 45.9 169 41 01.4	West East 149 L ecc. (U.	3.325713 3.490693 3.009649	2117.0 3095.2 1022.5	6945.5 10154.8 3354.7
Mount Hood,1916.	45 22 25.963 121 41 41.860	120 08 55.2 159 04 19.0 230 38 51.7	299 52 09.5 338 59 21.4 51 04 20.3	S. E.) Larch Chinidere Stacker	4. 549125 4. 403751 4. 777416	35409.9 25336.8 59898.5	116174.0 83125.8 196517.0
Tygh, 1916	45 21 20.527 121 12 57.924	86 44 32.9 192 46 22.3 221 25 08.5	266 31 26.1 12 51 20.3 41 45 58.5	Lookout Stacker Maryhill	4.382310 4.611158 4.757580		79121.6 134011.5 187743.1
Bald Peter, 1916 1.	45 03 36.47 121 22 02.64	158 45 55 213 12 08	338 39 17 33 39 23	Lookout Maryhill	4.528069 4.957318	33734.1 90639.6	110676.0 297373.4
Chinidere (U. S. G. S.), cairn, 1916. ¹	45 35 12.200 121 48 39.312	168	348	Chinidere	0.52504	3.35	11.0
Sedum Point (Wash.), 1916. ¹	45 47 36.99 121 58 50.73	218 19 09 244 27 02	38 26 04 64 38 57	Red Huckle	4.303112 4.377076	20096. 1 23827. 4	65932. 0 78173. 7
Little (Wash.), 1916.1	45 48 00.56 122 06 12.43	235 34 07 252 49 25	55 46 19 73 06 37	Red Huckle	4. 425600 4. 511477	26644.0 32469.6	87414.5 106527.3
Big Huckleberry (Wash.), 1916. ¹	45 50 52.02 121 46 58.41	163 29 18 235 29 11	343 27 42 55 32 35	Red Huckle	4.006550 3.872107	10152.0 7449.2	33307.0 `24439.6
Observation (Wash.), 1916. ¹	45 56 04.58 122 02 43.14	269 38 57 334 39 55	89 48 40 154 50 00	Red Chinidere	4. 242229 4. 630907	17467.4 42747.1	57307.6 140246.1
Lemei Rock (Wash.), 1916. ¹	46 01 08.00 121 45 32.72	4 48 53 27 00 18	184 46 39 206 57 40	Chinidere Red	4.683041 4.017860	48199.3 10419.8	158133.9 34185.6
Mount Adams, northwest peak (Wash.), 1916. ¹	46 12 16.78 121 30 01.77	1 04 08 19 26 34	181 03 09 199 13 12	Lookout Chinidere	4.981326 4.862030	95791.3 72783.0	314275.3 238788.9
Mount Adams, southeast peak (Wash,), 1916.	46 12 10.611 121 29 26.058	330 44 20.5 1 32 12.2 20 04 03.1	151 01 11.0 181 30 47.9 199 50 15.0	Stacker Lookout Chinidere	4. 793796 4. 980542 4. 862504	62200. 8 95618. 5 72862. 5	204070. 5 313708. 4 239049. 7

¹ No check on this position.

.

TABLE OF ELEVATIONS.

Station.	Point to which elevation refers.		ation.	Station.	Point to which elevation refers.	Elevation.	
Class 1.1				Class 2-Continued.			
	Station	Meters. 1366.09	Feet.	Demonster	Station	Meters.	Feet. 1016.8
Precise level B. M. Q.	mark	1900' 08	4481.9	Expansion		309.91	1010.9
Alkali	do	827.17	2713.8	Alder	do	396.66	1301.4
Job.	do	513.78 188.94	1685.6 619.9	Kila	do	492.21 746.71	1614.9 2449.8
Stanfield west base Stanfield east base	do	231.11	758.2	Ella. Montgomery Toby	do	449.23	1473.8
Class 2.				Maryhill			3134.6
				John	ido	725.16	2379.1
Ogden Peak Pilot Peak Oxford Mountain Home Nyssa	do	2918.45	9574.9	Stacker	do	984.17	3228.9
Pilot Peak	do	3262.47 2828.81	10703.6 9280.9	Lookout. Huckle	do	1988.71	6524.6
Mountain Home	do	2020. 81 955. 50	3134.8	Huckle	····ao	1458.14	4783.9
Nvssa.	do	697.04	2286.9	Chinidere		1424.64	4674.0
				North	00 1	855 20	2805.8
B. M. G	do	663.57	2177.1	South	do	240.01	787.4
Cache	do	3151.73	10340.3	South. West. 149 L eccentric	do	365. 55	1199.3
Cache. Putnam. Caribou.		2724.78 2983.27	8939.6 9787.6	149 L eccentric		59.21	194.3
Woodall	do	2379.43	7806.5	Class 3.			
Henry. Stump Middle Butte		2530, 11	8300.9	Bonida, iron eleva-	North	1465.6	4808
Stump	do	2615.82	8582.1	tor. ³	gable. Base		1
Middle Butte	đo	1948.97	6394.2	Little Butte, cairn	Base	2013.3	6605
Big Butte Kimama	do	2309.26	7576.3 4752.1	Jacob Gohl's ranch	Southwest	1539.4	5050
Kimama		1448.45	4/52.1	house. Dietrich standpipe	gable. Top	1291.2	4236
Picabo		1999.79	6561.0	Nyssa standpipe	do	702.0	2303
Flat	do	1306.08	4285.0				
Green	do	2072.27	6798.8	East. Bennet ²	Ground	369.1	1211
Blue	do	1281.13	4203.2	Bennet ²	do	2159.0	7083
Camas		2267.61	7439.6	Rock Creek Moun- tain, cairn. ³	Тор	2725.9	8943
Silver Shafer	do	2562.05	8405.7	Echó Catholic	do	209.4	687
Mitchell	do	2313.87 1067.52	7591.4 3502.4	Church, cross. Gate ³	Ground	122.8	403
Oregon-Idaho bound-	do	700.89	2299.5				405
				Gravel ³ Umatilla standpipe. 148 L ³ Tygh. Big Huckleberry	do	125.7	412
ary monument. La Grande	do	849.72	2787.8	Umatilla standpipe.	Top	125.7	412
Faha	da	217.04	710 1	148 L ³	Ground	96.8 831.8	318
EchoLarch	uo	1234.89	712.1 4051.5	Big Hucklaharry	ao	831.8 1281.2	2729 4203
Red	do	1517.31	4978.0	THE TRUCTOPOLLY		1401.4	7400
Red Squaw Iron	do	1800.15	5906.0	Bunker Hill 3	do	1013.7	3326
Iron	do	1978.75	6492.0	Bunker Hill ² Observation ² Little ²	do	1262.3	4141
Dry			6489.8	Little 2	do	1290. 9	4235
Beaver	do	1978.10	6410.5	Teton Peek	d 0	4201	13783
Medical	.do	1988.13	6522.7	NVS88 Dressure	Top	698.4	2291
Maxwell Fanny	do	2655. 61	8712.6	Teton Peak. Nyssa pressure standpipe on			
			7160.6	aqueduct. Mount Hood			11253
Powder	do	2714.11	8904.5			3200	
Kmily	do	1848.38	6064.2				
Dinch	i đo	1398.79	4589.2				1
DICIL		1100 0					
Birch. Big Hill Laurila	do	1168.98 422.93	3835.2 1387.6				

¹ See note regarding accuracy below.

³ No check on this elevation.

Note.—The datum for all the elevations is mean sea level. The stations are in three classes—first, those fixed by direct connection with sea level, the elevations of which are subject to a probable error of ± 0.04 meter; second, the stations in the main scheme fixed by reciprocal measures of vertical angles and subject to probable errors varying from ± 0.1 to ± 1.2 meters; and, third, the intersection stations the elevations of which are fixed by measurement of vertical angles which are not reciprocal, the stations not being occupied, and subject to probable errors which may be as great as ± 3 meters.

Special Publication No. 74,

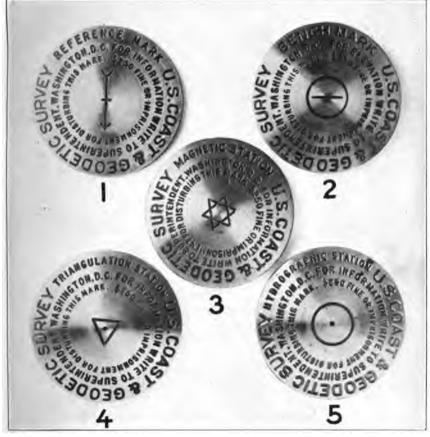


FIG. 1.-STANDARD MARKS OF THE U. S. COAST AND GEODETIC SURVEY.

- Reference mark.
 Bench mark.
 Magnetic station mark.
 Triangulation station mark.
 Hydrographic station mark.

Special Publication No. 74.

FIG. 2.-STANDARD TRIANGULATION STATION MARK.

DESCRIPTION OF STATIONS.

This list may be conveniently consulted by reference to the illustrations at the end of this publication or to the index. All azimuths given in the descriptions are reckoned continuously from true south around by west to 360°, south being 0°, west 90°, north 180°, and east 270°. Where magnetic azimuths are given they are indicated as such.

The distance and direction between station mark and reference mark will be found under "Geographic positions" in connection with the reference mark.

In general, except where the contrary is specifically stated, the surface and underground mark are not in contact, so that a disturbance of the surface mark will not necessarily affect the underground The underground mark should be resorted to only in cases mark. where there is evidence that the surface mark has been disturbed.

The name and dates given in each description immediately after the county refer to the chief of party by whom the station was established, the date of the establishment of the station, and the date when the station was last recovered.

Any person who finds that one of the stations herein described has been disturbed or that the description no longer fits the facts is requested to send such information to the Director, Coast and Geodetic Survey, Washington, D. C.

MARKING OF STATIONS.

The standard disk station and reference marks referred to in the following descriptions and notes consist of a disk and shank of brass cast in one piece, as shown in figure No. 2. The disk of the station mark is 90 mm. in diameter, with a hole at the center surrounded by a 20-mm. equilateral triangle, and has the following inscribed legend: "U. S. Coast and Geodetic Survey Triangulation Station. For information write to the Superintendent, Washington, D. C. \$250 fine or imprisonment for disturbing this mark." The shank is 25 mm. in diameter and 80 mm. long, with a slit at the lower end into which a wedge is inserted, so that when it is driven into a drill hole in the rock it will bulge at the bottom and hold the mark firmly in place.

The standard disk reference mark, shown in figure No. 1, is the same size and shape as the station mark, with an arrow on the top in place of the triangle, which, when properly set, points to the station. The legend is the same, except the words "reference mark" take the place of the words "triangulation station."

The following notes on the marking of stations are made as general as possible in order that it may not be necessary in the field to describe small and unimportant variations:

NOTES DESCRIBING SURFACE AND SUBSURFACE STATION MARKS, REFERENCE, AND WITNESS MARKS.

Surface marks.

Note 1.—A standard disk station mark set in the top of (a) a square block or post

Note 2.—A standard disk station mark see in the op (a) a square other of point Note 2.—A standard disk station mark wedged in a drill hole in outcropping bed-tock (a) and surrounded by a triangle chiseled in the rock, (b) and surrounded by a circle chiseled in the rock, (c) at the intersection of two lines chiseled in the rock.

Note 3.—A standard disk station mark set in concrete in a depression in outcropping bedrock.

Note 4.—A standard disk station mark wedged in a drill hole in a bowlder.

Note 5.-A standard disk station mark set in concrete in a depression in a bowlder. Note 6.-A standard disk station mark set in concrete at the center of the top of a tile (a) which is embedded in the ground, (b) which is surrounded by a mass of concrete, (c) which is fastened by means of concrete to the upper end of a long wooden pile driven into the marsh, (d) which is set in a block of concrete and projects from 12 to 20 inches above the block.

Underground marks.

Note 7.- A block of concrete 3 feet below the ground containing at the center of its upper surface (a) a standard disk station mark, (b) a copper bolt projecting slightly above the concrete, (c) an iron nail with the point projecting above the concrete, (d) a glass bottle with the neck projecting a little above the concrete, (e) an earthen-ware jug with the mouth projecting a little above the concrete.

Note 8.—In bedrock (a) a standard disk station mark wedged in a drill hole, (b) a standard disk station mark set in concrete in a depression, (c) a copper bolt set in cement in a drill hole or depression, (d) an iron spike set point up in cement in a drill hole or depression.

Note 9.—In a bowlder 3 feet below the ground (a) a standard disk station mark wedged in a drill hole, (b) a standard disk station mark set in concrete in a depresset with cement in a drill hole or depression. Note 10.—Embedded in earth 3 feet below the surface of the ground (a) a bottle in an upright position, (b) an earthenware jug in an upright position, (c) a brick in a

horizontal position with a drill hole in its upper surface.

Reference marks.

Note 11.-A standard disk reference mark with the arrow pointing toward the station set at the center of the top of (a) a square block or post of concrete, (b) a concrete cylinder, (c) an irregular mass of concrete.

Note 12.—A standard disk reference mark with the arrow pointing toward the station (a) wedged in a drill hole in outcropping bedrock, (b) set in concrete in a depression in outcropping bedrock, (c) wedged in a drill hole in a bowlder, (d) set in concrete in a depression in a bowlder.

Note 13 .- A standard disk reference mark with the arrow pointing toward the station, set in concrete at the center of the top of a tile (a) which is embedded in the ground, (b) which is surrounded by a mass of concrete, (c) which is fastened by means of concrete to the upper end of a long wooden pile driven into the marsh, (d) which is set in a block of concrete and projects from 12 to 20 inches above the block.

Witness marks.

Note 14.—A conical mound of earth surrounded by a circular trench. Note 15.—A tree marked with (a) a triangular blaze with a nail at the center and each apex of the triangle, (b) a square blaze with a nail at the center and each corner of the square, (c) a blaze with a standard disk reference mark set at its center into the tree.

PRINCIPAL POINTS.

Cache (Cassia County, Idaho, P. A. Welker, 1897; 1915).—On Independence Peak, about 12 miles southwest of Elba, Idaho. The station is best reached by pack animals from Elba by going up the canyon past the uppermost lake. The station is marked by a copper bolt embedded in the rock. Four reference marks consisting of holes drilled in the rock 3 feet from the center mark are approximately north, east, south, and west of the station.

Oxford (Oneida County, Idaho, P. A. Welker, 1897; 1915).—On the peak of the same name about 6 miles west of the town of Oxford and about 15 miles east of Malad City, Idaho. The station is best reached from the town of Oxford by means of a log road leading about two-thirds of the distance to the summit. It is marked by a copper bolt embedded in the rock. Four reference marks consisting of holes drilled in the rock 2.5 feet from the center mark are approximately north, east, south, and west of the station.

Big Butte (Bingham-Blaine Counties, Idaho, C. V. Hodgson, 1915).—On the highest point of the mountain of the same name, 23 miles southeast of Arco and 7 miles

southwest of Cerro Grande. The station is on or near the boundary line between Bingham and Blaine Counties and is marked by a bronze tablet in a bowlder as de-scribed in note 4.¹ The reference mark is a 1-inch hole 3 inches deep in the top of a large bowlder which projects 6 inches above the surface of the ground. A U. S. Geological Survey cairn is near by. (See "Geographic positions.") Putnam (Bannock County, Idaho, C. V. Hodgson, 1915).—About 14 miles east of Pocatello, 18 miles southeast of Rossfork, and 12 miles north of west from Chesterfield on the courter of the true bishest packs of the Dutner Mountain

on the southernmost of the two highest peaks of the Putnam Mountains. Another peak of about the same height is about 8 miles to the northward and is locally known as Putnam Mountain. The station is marked by a bronze tablet in concrete as described in note la.¹ A U. S. Geological Survey cairn is near by. (See "Geographic motions") positions.

Middle Butte (Bingham County, Idaho, C. V. Hodgson, 1915).—Nine miles north of Taber on the highest point of Middle Butte Mountain near its western end. The station is marked by a bronze tablet in a bowlder as described in note 4,1 with a ref-

scation is marked by a bronze tablet in a bowlder as described in note 4, with a ref-erence mark, a bronze tablet in a bowlder, note 12c.¹ A U. S. Geological Survey carn is near by. (See "Geographic positions.") **Caribou** (Bonneville County, Idaho, C. V. Hodgson, 1915).—On the highest point of Caribou Mountain, a bare round-topped peak easily reached by pack animals from all directions. The station is about 35 miles, air line, N. 25° E. of Soda Springs and 7 miles by trail northeast of Gray poet office. It is marked by a bronze tablet in a bowlder as described in note 5,¹ with a reference mark, a bronze tablet in a bowlder, note 12d,¹ on the south slope of the peak, 0.75 meter (2.5 feet) below the station. A U. S. Geological Survey cairn 5 feet high is near by. (See "Geographic positions") positions.")

Kimama (Lincoln County, Idaho, C. V. Hodgson, 1915).—On a low but prominent ridge covered with sagebrush about 5 miles, air line, southeast by east from Owinza, 9 miles, air line, west by north from Kimama, and 3 miles south of the railroad. The station is at the east end of the ridge on a rocky knob about 10 feet higher than the remainder of the ridge, which identifies the ridge from all others in that vicinity. The station is marked by a bronze tablet in rock as described in note 2,¹ with a refer-

The station is marked by a bonze tablet in rock as described in hote 2, with a reference mark, a bronze tablet in rock, note 12b,¹ near the southeast edge of the knob 1.5 meters (4.9 feet) below the station.
Picabo (Blaine County, Idaho, C. V. Hodgson, 1915).—About 5 miles, air line, W. 20° S. from Picabo on the highest and most westerly of a group of hills and about one-half mile south of the old Hailey mine, which is on the same ridge. The station is marked here tablet in the south of the station.

is marked by a bronze tablet in rock, as described in note 3,¹ with a reference mark, a bronze tablet in rock, note 12b,¹ 0.20 meter (0.7 foot) below the station mark. Flat (Lincoln County, Idaho, C. V. Hodgson, 1915).—About 6 miles north of east of Jerome, three-eights of a mile north of the automobile road leading east from Jerome toward Burley and 1¼ miles south of Jerome reservoir on the highest part and near the center of Flattop Butte and about 8 paces from the southeast edge of a cup-like depression near its middle. The station is marked by a bronze tablet in a bowlder as described in pote 5,¹ the bowlder being about 0, 1 meter (0.3 foot) shows

cup-like depression near its middle. The station is marked by a bronze tablet in a bowlder as described in note $5,^1$ the bowlder being about 0.1 meter (0.3 foot) above the surface of the ground. The reference mark, a bronze tablet in a bowlder, note $12d_1$ is 0.2 meter (0.7 foot) above the station mark. Green (Camas County, Idaho, C. V. Hodgson, 1915).—About 7 miles east and 7 miles south of Hill City, 2 miles south and 1 mile west of Henry Bauscher's ranch, on a rocky knob on a flat-topped ridge, the highest point in the vicinity. The station is marked by a bronze tablet in a bowlder as described in note $5,^1$ the bowlder being about 0.1 meter (0.3 foot) above the surface of the ground. The reference mark a about 0.1 meter (0.3 foot) above the surface of the ground. The reference mark, a bronze tablet in a bowlder, note 12d,¹ is 0.35 meter (1.2 feet) above the station mark. An 8-foot cairn, marking the U.S. Geological Survey station Greensprings is near by.

An 8-foot cairn, marking the U. S. Geological Survey station Greensprings is near by. (See "Geographic positions.") **Camas** (Efmore County, Idaho, C. V. Hodgson, 1915).—About 16 miles northeast of Mountain Home, on the highest point of Bennet Mountain, about 1⁄4 mile south-west of the dug road leading from the Mountain Home—Rocky Bar road near Charles Irwin's ranch to the Tex Riley ranch. The station is marked by a bronze tablet in a bowlder as described in note 5,¹ the bowlder being about 1 meter (3 feet) above the surface of the ground. The reference mark, a bronze tablet in a bowlder, note 12d,¹ is 0.35 meter (1.2 feet) below the station mark. A 6-foot cairn marking the U. S. Geological station is near by. (See "Geographic positions.") **Blue** (Owyhee County, Idaho, C. V. Hodgson, 1915).—On the highest point of Blue Ridge Hill, 18 miles south and 3 miles west of Glenns Ferry, 13 miles west of south of the D. B. Warren ranch and 4 miles west of the Glenns Ferry—Garber

¹ See p. 23.

wagon road. The station is best reached by going $16\frac{1}{2}$ miles from the Warren ranch south along the Garber road to the crest of Blue Ridge, when the hill on which the station is located will be seen about 4 miles along the ridge to the northwest. The station is marked by a bronze tablet in a bowlder as described in note 5,¹ the bowlder being about 0.1 meter (0.3 foot) above the surface of the ground. The reference mark, a bronze tablet in a bowlder, note 12d,¹ is on about the same level as the station mark.

Mountain Home (Elmore County, Idaho, C. V. Hodgson, 1915).—In the town of Mountain Home, southeast of the railroad water tank, on the right of way of the Oregon Short Line Railroad, about 20 paces southwest of the track. The station is marked by a bronze tablet in concrete as described in notes 1a and 7a,¹ with the reference mark, a bronze tablet in concrete, note 11a,¹ in the fence line on the opposite side of the street from the station and at the same elevation. Precise level bench mark M_4 is near by. (See "Geographic positions.")

the street from the station and at the same elevation. Precise level bench mark M₄ is near by. (See "Geographic positions.") Silver (Owyhee County, Idaho, C. V. Hodgson, 1915).—About 5 miles southeast of Silver City and 2½ miles southeast of War Eagle Mountain, on the highest point of what is known locally as Cinnabar or Quicksilver Mountain. The station is marked by a bronze tablet in a bowlder as described in note 5,¹ the bowlder extending 5 inches above the surface of the ground. The reference mark, a bronze tablet in a bowlder (0.7 foot) below the station.

by a blobe tablet in a bowder as described in note 5, the bowder extending 5 inches above the surface of the ground. The reference mark, a bronze tablet in a bowlder, note 12d,¹ is 0.2 meter (0.7 foot) below the station. **Shafer** (Boise City, Idaho, C. V. Hodgson, 1915).—About 12 miles northeast of Boise on the highest point of Shafer Butte, which is the highest in this group of hills. It is about 6 miles by trail north of where the divide is crossed by a wagon road which leads up Stuarts Gulch around the head of Dry Creek and over to an old sawmill on Daggett Creek. The station is marked by a bronze tablet in a bowlder as described in note 5,¹ the bowlder extending about 0.1 meter (0.3 foot) above the ground. The reference mark, a bronze tablet in a bowlder, note 12d,¹ is on the south side of the remains of a large cairn and is 1.06 meters (3.5 feet) above the station mark. **Squaw** (Canyon-Boise Counties, C. V. Hodgson, 1915; 1920).—On or near the line between Canyon and Boise Counties, about 11 miles north and 6 miles east of Emmett,

Squaw (Canyon-Boise Counties, C. V. Hodgson, 1915; 1920).—On or near the line between Canyon and Boise Counties, about 11 miles north and 6 miles east of Emmett, about 5 miles east of the Van Deusen ranch, $2\frac{1}{2}$ miles E. 10° N. of H. M. Shearer's house, on the highest and most northerly butte of Squaw Mountain, about $\frac{1}{2}$ mile south of the Cold Springs, well known to the ranchers of that vicinity. The station is marked by a bronze tablet in a bowlder as described in note 5,¹ the bowlder extending 4 inches above the surface of the ground. The reference mark, a bronze tablet in a bowlder, note 12d,¹ is of the same elevation as the station and is 18 inches above the ground.

Nyssa (Canyon County, Idaho, C. V. Hodgson, 1915; 1920).—Three-fourths mile east of Nyssa, Oreg., on a small sand hill covered with sagebrush on the east bluff of the Snake River and about $\frac{1}{5}$ mile south of the east end of the wagon bridge across the Snake River at Nyssa. The station is marked by a bronze tablet in concrete as described in notes la and 7a¹ with the reference mark, a bronze tablet in concrete, note 11a,¹ 0.3 meter (1 foot) lower than the station.

note 11a,¹ 0.3 meter (1 foot) lower than the station. **Iron** (Washington County, Idaho, C. V. Hodgson, 1916).—About 1 mile south of Mineral, Idaho, 6 miles east of the Snake River, 22 miles, air line, and 27 miles by road north of Weiser, on a bald peak known as Iron Mountain, the northeastern and higher of two peaks whose tops are nearly level. An old freight road leading from Weiser to Mineral passes around the peak about 250 meters (820 feet) south of the station and 300 feet below it. This road is known as the Jenkins Creek and Sheep Creek road. The station is marked by a bronze tablet in a bowlder, note 12d.¹

note 5,¹ with a reference mark, a bronze tablet in a bowlder, note 12d.¹ Dry (Malheur County, Oreg., C. V. Hodgson, 1916; 1920).—About 22 miles, air line, northwest of Vale, 8 miles, air line, southwest of Brogan, 6 miles, air line, southeast of Juniper Mountain, and 6 miles southwest of Charles Pritchard's ranch, on the highest point of the west end of a bald ridge. The station is marked by a bronze tablet in a bowlder as described in note 5,¹ with a reference mark, a bronze tablet in a bowlder, note 12d.¹ The cairn marking the U. S. Geological Survey station Dry Ridge near by, is about 7 feet in diameter at the base and 10 feet high. (See "Geographic positions.") Beaver (Baker County, Oreg., C. V. Hodgson, 1916).—About 12 miles south and

Beaver (Baker County, Oreg., C. V. Hodgson, 1916).—About 12 miles south and 3 miles east of Baker, on the northern and higher of the two bald grassy knobs on Beaver Mountain or Bald Ridge, which lies just south and east of the head of Beaver Creek, and about 1½ miles south of Echam & Sons' sawmill on Beaver Creek. The station is marked by a nail in a block of concrete and covered by a cairn. The reference mark is a hole in rock flush with the surface of the ground.

¹ See p. 23.

Maxwell (Baker County, Oreg., C. V. Hodgson, 1916).—About 13 miles, air line, northwest of Baker, 7 miles southwest of Haines, 4 miles southwest of Rock Creek Power Plant, and $\frac{1}{4}$ mile north of the trail leading over the ridge from the Maxwell mine to the Elkhorn mine, on the highest point of the mountain to the north of the trail. The station is about $1\frac{1}{2}$ miles northeast of the Maxwell mine and is marked by a bronze tablet in a bowlder as described in note 5,¹ with a reference mark, a bronze tablet in a bowlder, note 12d.¹

Medical (Baker County, Oreg., C. V. Hodgson, 1916).—On the line between Union and Baker Counties, about 7 miles, air line, and 10 miles by trail from Medical Springs, on the highest point, at the south end of a bald ridge known as Flagstaff Butte, at the head of Big Creek. The trail from Medical Springs to Sand Pass goes around the butte on its west side near the top. The station is marked by a bronze tablet in a bowlder as described in note 5,¹ with a reference mark, a bronze tablet in a bowlder, note 12d.¹ Small cairns were left over the station and reference marks.

note 12d.¹ Small cairns were left over the station and reference marks. **Fanny** (Union County, Oreg., C. V. Hodgson, 1916).—About 18 miles east of La Grande and 5 miles east of Cove post office and about 1½ miles west of Mount Fanny ranger station. The station is on the easternmost and highest peak on Mount Fanny and is marked by a bronze tablet in a bowlder as described in note 5,¹ with a reference mark, a bronze tablet in a bowlder, note 12d.¹ A U. S. Geological Survey cairn is near by. (See "Geographic positions.") **Powder** (Baker County, Oreg., C. V. Hodgson, 1916).—About 10 miles, air line, north of west from Haines and 1½ miles north of the North Powder River on the easternmost and highest of the three peaks on the bickest riders north of the North

Powder (Baker County, Oreg., C. V. Hodgson, 1916).—About 10 miles, air line, north of west from Haines and $1\frac{1}{2}$ miles north of the North Powder River on the easternmost and highest of the three peaks on the highest ridge north of the North Powder River, on what is known as North Powder Mountain and also as the Three Sisters Peak. The station is very difficult to reach by pack animals. It is marked by a bronze tablet in a bowlder as described in note 5,¹ with a reference mark, a bronze tablet in a bowlder.

Emily (Union County, Oreg., C. V. Hodgson, 1916).—About 7 miles direct and 12 miles by road and trail north of La Grande, on the highest bald point at the edge of the timber at the south end of the long ridge known locally as Mount Emily. The station is easily located by the Forest Service lookout tower, which is used as a witness mark. The station is marked by a bronze tablet in rock as described in note 2a,¹ with a reference mark, a bronze tablet in a bowlder, note 12d.¹ This station is about 10 miles west of the U. S. Geological Survey station of the same name. La Grande (Union County, Oreg., C. V. Hodgson, 1916).—Opposite the freight depot, southwest of the intersection of Chester Street with the street running south

La Grande (Union County, Oreg., C. V. Hodgson, 1916).—Opposite the freight depot, southwest of the intersection of Chester Street with the street running south of the railroad tracks, on a lot formerly occupied by a building which had been burned. The station was not marked. Reference mark No. 1, a bronze tablet in concrete, note 11a,¹ is in the southwest corner of the small sodded park between the passenger and freight depots. Reference mark No. 2, a bronze tablet in concrete, note 11a,¹ was buried with the top 1 inch below the surface because of the traffic and is just west of the longitude station and about 10 feet north of the north edge of the sidewalk. Reference mark No. 3 is a small cross chiseled in the concrete pavement about 15 inches back from the corner of the curb and on the line to station Fanny at the southwest corner of the intersection of Chester Street with the street along the south side of the railroad.

Birch (Umatilla County, Oreg., C. V. Hodgson, 1916).—About 9 miles east and 6 miles south of Pilot Rock and 5 miles east of Charles Manning's ranch. The station is best located by going east $1\frac{1}{2}$ miles from Pilot Rock and taking the road known as Ridge Road, leading south and southeast over the ridge and following that to a point about 16 miles from Pilot Rock, when the station will lie about one-half mile to the north on a bald knob, with trees on the north and east slopes, which makes out to the north from the main ridge. The station is on the highest point of the knob and is marked by a bronze tablet in rock as described in note $2,^1$ with a reference mark, a bronze tablet in rock, note $12a.^1$

Big Hill (Umatilla County, Oreg., C. V. Hodgson, 1916).—About 17 miles south of east from Pendleton, Oreg., 10 miles northwest from Meacham, and 100 meters north of the wagon road between the two towns, on a bald hill the north slope of which is covered with pine timber. About one-third mile to the eastward on the south side of the wagon road and on the same ridge is another bald knob about 10 feet higher than the one on which the station is located. The station is marked by a bronze tablet in a bowlder as described in notes 4 and 8a,¹ with a reference mark, a bronze tablet in a bowlder, note 12c.¹ Two witness marks, triangular blazes on trees, note 15a,¹ are distant, respectively, 21.8 meters (71.5 feet) in azimuth 181°08′ 42″ and 20.7 meters (67.9 feet) in azimuth 194° 26′ 59″.

¹ See p. 23.

Alkali (U. S. G. S.) (Umatilla County, Oreg., C. V. Hodgson, 1916).—Seventeen miles southeast of Echo, 12 miles west and 5 miles north of Pilot Rock, $1\frac{1}{2}$ miles north and $\frac{3}{4}$ mile west of the Reeder ranch in the SW. $\frac{1}{4}$ sec. 29, T. 1 N., R. 30 E., on the uncultivated top of a rounded knoll of land owned by the Slusher brothers. The station is identical with the U. S. Geological Survey station of the same name and is marked by a U. S. G. S. marker. The reference mark is a bronze tablet in concrete as described in note $11c.^1$

Laurila (Umatilla County, Oreg., C. V. Hodgson, 1916).—About 2 miles north and 12 miles east of Stanfield, Oreg., 9 miles north and 7 miles west of Pendleton, 87 paces east of the center of sec. 20, T. 4 N., R. 31 E., 2 feet south of the east-andwest section-line fence, on land owned by John Laurila, who lives 1 mile south on the Missouri Gulch wagon road. The station is marked by a bronze tablet in concrete as described in notes 1b and 7a.¹

Job (Umatilla County, Oreg., C. V. Hodgson, 1916).—About 9 miles southwest of Echo and 3 miles southwest of the Spike ranch on the highest part of a domeshaped hill locally known as Service Butte. The station is identical with the U. S. Geological Survey station of the same name and is marked by a U. S. G. S. tablet cemented into the top of a large bowlder about 4 inches above the surface of the ground. The reference mark is a bronze tablet in rock as described in note 12a.¹

ground. The reference mark is a bronze tablet in rock as described in note 12a.¹ Expansion (Benton County, Wash., C. V. Hodgeon, 1916).—On the highest point of the group of hills just north of the Columbia River, 3 miles northeast of Umatilla, Oreg., 2 miles northeast of the Umatilla ferry landing on the Washington side of the Columbia River, and one-third mile north of the wagon trail leading from the ferry landing northeast over the hills. The station is identical with the U. S. Geological Survey station of the same name and is marked by a U. S. G. S. metal station mark cemented into the top of a bowlder about flush with the surface of the ground. The reference mark is a bronze tablet in rock as described in note 12a.¹

reference mark is a bronze tablet in rock as described in note $12a_1$ Stanfield west base (Morrow County, Oreg., C. V. Hodgson, 1916).—Thirteen miles west of Stanfield, 7 miles south of Irrigon, 5 miles west and one-half mile north of the Stapish ranch, on the east side of an abandoned wagon trail leading from Irrigon to Sand Hollow. The stamped elevation on the U. S. Geological Survey bench mark is 620 feet. The 20-foot swath cleared through the sagebrush along the base line will locate the station for some years to come. The station is marked by a bronze tablet in concrete as described in notes 1a and 7a,¹ with a reference mark, a bronze tablet in concrete, note 11a.¹

Stanfield east base (Umatilla County, Oreg., C. V. Hodgson, 1916).—Three and one-half miles west and one-half mile south of Stanfield, a station on the Oregon-Washington Railroad and Navigation Co. The station is near the west face of the middle mound of a prominent low hill called Emigrant Butte. A smaller hill lies about one-half mile to the southward with a wagon trail between. The station is marked by a bronze tablet in concrete as described in notes 1a and 8b.¹ Reference mark No. 1 is a bronze tablet in concrete as described in note 11a.¹ Reference mark No. 2 is similar to No. 1, except that in place of the standard reference mark is a wooden plug with a nail in the center.

Echo (Umatilla County, Oreg., C. V. Hodgson, 1916).—In the town of Echo, about 225 meters northeast of the railroad depot, 25 meters east of the upper irrigation canal, on a point of ridge nearest the town. The station is marked by a bronze tablet in concrete as described in notes 1a and $7a_1^1$ except that the underground mark bears an iron bolt in place of the usual metal mark. The reference mark is a bronze tablet in concrete as described in note 11a.¹ The center chimney of the concrete schoolhouse at Echo is in azimuth 0° 38' 26'' and the center of the red wooden water tank at Echo is in azimuth $42^\circ 03' 08''$.

Alder (U. S. G. S.) (Klickitat County, Wash., C. V. Hodgson, 1916).—On the highest point of a ridge about 2 miles north of the Columbia River and about the same distance west of north of Alderdale, Wash. The station is identical with the U. S. Geological Survey station of the same name and is marked by a U. S. G. S. marker in a bowlder as described in note 5,¹ with a reference mark, a bronze tablet in rock, note 12b.¹ The east gable of the Alderdale schoolhouse is in azimuth $324^{\circ}06'30''$.

Ella (Morrow County, Oreg., C. V. Hodgson, 1916).—About 5 miles north and about one-half mile east of Ione, $3\frac{1}{2}$ miles south and $1\frac{1}{2}$ miles east of what was formerly Ella post office, 1 mile south and one-half mile west of U. S. Geological Survey station Ella, on a flat-topped ridge in a cultivated field in the NE. $\frac{1}{4}$ sec. 14, T. 1 N., R. 24 E., on the highest point in the vicinity. The fence line to the west is about 135 meters distant. The station is marked by a bronze tablet in concrete as de-

¹ See p. 23.

scribed in notes la and 7a,¹ with a reference mark, a bronze tablet in concrete, note 11a.1

Toby (**U**. **S. G. S.**) (Gilliam County, Oreg., C. V. Hodgson, 1916).—About 15 miles south and 2 miles east of Arlington, Oreg., $\frac{1}{2}$ mile south and 1 mile east of the Toby ranch, in a cultivated field on the highest point of a ridge and just east of three large cisterns which are used for storing water for the Toby ranch. The station is identical with the U.S. Geological Survey station of the same name and is marked by an iron pipe and cap extending 8 inches above the surface, with a bronze tablet in concrete as reference mark, note 11a.1

Montgomery (U. S. G. S.) (Klickitat County, Wash., C. V. Hodgson, 1916).—On the highest part of a ridge about 8 miles northwest of Arlington, Oreg., and 7 miles northwest of Roosevelt, Wash., on land formerly owned by a Mr. Montgomery. Fred Emily's ranch is about 1 mile to the east and a conspicuous rocky knob near the edge of the bluff is 135 paces to the southwest. The hill is covered with large bowders. The station is identical with the U.S. Geological Survey station of the same name and is marked by a U.S.G.S. marker in a bowlder as described in note 5, with a bronze

tablet in rock as a reference mark, note $12b.^1$ John (Sherman County, Oreg., C. V. Hodgson, 1916).—In the northwest corner of the NW. $\frac{1}{4}$ sec. 17, T. 2 S., R. 18 E., on the highest part of a knoll in a cultivated field now leased by Joseph Eddy. Moro, Oreg., is about 7 miles north and 7 miles west of the station. The station is marked by a bronze tablet in concrete as described in notes 1a and 7a,¹ with a bronze tablet in concrete as a reference mark, note 11a.¹ Reference mark No. 2, a bronze tablet in a bowlder, note 12d,¹ is at the northwest corner of Permission was given to remove the surface mark but the underground section 17. mark can be recovered from the reference marks.

Maryhill (U. S. G. S.) (Klickitat County, Wash., C. V. Hodgson, 1916).—About 8 miles southeast of Goldendale, 5 miles northeast of Maryhill, and 5 miles east of the Maryhill-Goldendale road, on the highest point of the hills overlooking the Columbia River. The station is identical with the U. S. Geological Survey station of the same name and is marked by a U. S. G. S. marker in a bowlder according to note 5,1 with a

name and is marked by a U. S. G. S. marker in a bowider according to note 5, with a reference mark, a bronze tablet in rock, note 12b.¹ Stacker (Klickitat County, Wash., C. V. Hodgson, 1916).—About 9 miles northeast of The Dalles, Oreg., and 10 miles southwest of Centerville, Wash., on a high bald hill on the first high ridge north of the Columbia River, 1 mile south of the Lyle-High Prairie-Centerville road and 1 mile east of the steep road which leads north from Grand Dalles over the ridge to the Lyle-High Prairie-Centerville road. The station is on land belonging to Leo F. Brun and is marked by a bronze tablet in a bowider as a reference mark note. scribed in notes 5 and 9a,¹ with a bronze tablet in a bowlder as a reference mark, note The underground mark is about 2 feet below the surface. 12d.1

Lookout (Hood River County, Oreg., C. V. Hodgson, 1916).—On the highest part of Lookout Mountain near the U. S. Geological Survey station of the same name marked by a cairn which was not removed. A Forest Service ranger cabin and look-out station is near by, a little to the south and west. Dufur is about 24 miles by road and trail to the northeast. The station is marked by a bronze tablet in a bowlder as

described in note 5,¹ with a bronze tablet in a bowlder as a reference mark, note 12d.¹ Chinidere (Hood River County, Oreg., C. V. Hodgson, 1916).—On the highest point of Chinidere Mountain, about 10 miles southeast of Cascade Locks, Oreg., 1 mile west of Wahtum Lake, and 10½ miles by trail south of Catcade Locks, Oreg., 1 mile Columbia River Highway. The station is marked by a bronze tablet in a bowlder as described in note 5, with a reference mark, a bronze tablet in a bowlder, note 12d.¹ A U. S. Geological Survey cairn is near by. (See "Geographic positions.") **Huckle** (Skamania County, Wash., C. V. Hodgson, 1916).—On the highest point of Little Huckleberry Mountain, about 14 miles south of Guler post office and 8 miles south of Peterson Prairie ranger station. The station is marked by a bronze tablet in Problem of the provention of the station is marked by a bronze tablet in

rock as described in note 2.1 with a bronze tablet in rock as a reference mark, note12 a.1

SUPPLEMENTARY POINTS.

Oxford north base (Bannock County, Idaho, C. V. Hodgson, 1915).—Used only in connecting precise level B. M. E near Oxford railroad station to station Oxford. The station is 1.73 meters (5.7 feet) south of the bench mark and 25.905 meters (84.99 feet) east of the east rail of the railroad track. The station is not marked. Oxford south base (Bannock County, Idaho, C. V. Hodgson, 1915).—Used only in connecting precise level B. M. E near Oxford railroad station with station Oxford. The point is about 1 mile south of the railroad station on the east side of the railroad

and 11.195 meters (36.73 feet) east of the east rail of the track. The station is not marked.

Precise level B. M. E (Bannock County, Idaho, C. V. Hodgson, 1915).—Near Oxford, Idaho, in the yard of an abandoned creamery, 12 feet south of the gate and 30 paces east of the main track of the Oregon Short Line Railroad. The station is marked by a stone or cement post projecting about 6 inches from the ground with the letters "U. S. B. M." cut in the top.

Henry (Bannock County, Idaho, C. V. Hodgson, 1915).—About 6½ miles east of Henry post office on a bald-topped hill with pine trees on the north slope. The sta-tion was marked by a wooden stake. It may be recovered by reference to the U. S. Geological Survey station of the same name which is marked by a U. S. G. S. marker and cairn. (See "Geographic positions.") Weodell (Bannock County, Idaho C. Y. Hodgraph 1915). About 0 miles and the

and cairn. (See "Geographic positions.")
Woodall (Bannock County, Idaho, C. V. Hodgson, 1915).—About 9 miles northeast of Soda Springs and three-fourths mile east of the Woodall ranch in sec. 2, T. 8 S., R. 42 E. The station is not marked, but may be recovered by reference to a U. S. Geological Survey marker and cairn. (See "Geographic positions.")
Stump (Bannock County, Idaho, C. V. Hodgson, 1915).—About 8 miles northeast of Williamsburg post office and 5 miles east of the "Upper Dairy" ranch owned by Mr. Kuntz, on a bald peak at the head of Stump and Lane Creeks, the former flowing into Salt River and the latter into Black River. The station is identical with the U.S. Geological Survey testion of the same near is marked by a U.S. G.S. Market and the latter of the same near the station is identical with the U.S. Geological Survey station of the same name and is marked by a U.S.G.S. marker, 8 inches below the surface, and a cairn.

Blackfoot B. M. Q₆ (Bingham County, Idaho, C. V. Hodgson, 1915).—This station may be best located by comparison with precise level B. M. Q₆. (See "Geographic . positions."

Precise level B. M. Q₆ (Bingham County, Idaho, C. V. Hodgson, 1915).—About 2% miles south of Blackfoot, Idaho, at the road crossing, 12 telegraph poles north of mile pole 155, one-half meter (1.6 feet) west of the Oregon Short Line Railroad right of way in the southeast corner of the public road junction. The station is marked by

a U. S. Coast and Geodetic Survey metal bench mark disk. Precise level B. M. M. (Elmore County, Idaho, C. V. Hodgson, 1915).—At Moun-tain Home, Idaho, on the foundation of the Oregon Short Line Railroad water tank from the west side. The station is marked by a hole in a horizontal surface with the letters "U. S. B. M."

Mitchell (Malheur County, Oreg., C. V. Hodgson, 1915; 1920).—About 12 miles southwest of Nyssa, Oreg., on the highest part of Mitchell Butte near its north edge. The station is marked by a bronze tablet in a bowlder as described in note 5^1 , with a bronze tablet in a bowlder as a reference mark, note 12d.⁴ A U. S. Geological Survey cairn is near by. (See "Geographic positions.")

Idaho-Oregon boundary monument (Canyon-Malheur Counties, Idaho and Oreg., C. V. Hodgson, 1915).—In the big bend of the Snake River about 2½ miles east and about one-half mile south of River View Ferry, 2 miles south and 3 miles west of Roswell, Idaho, at the intersection of the State line with the east and west section line between sections 19 and 30, T. 21 S., R. 47 E., State of Oregon, and one-fourth mile south of Lee Baldridge's farmhouse. The station is 5 feet east of the east wagon track of the boundary road and is marked by a standard disk station mark set in the top of a stone 14 inches square and 26 inches long which projects 2 inches above the surface and marks the southeast corner of section 19 and the northeast corner of section 30, State of Oregon. A standard disk reference mark was set in the top of a stone in the middle of the road. The stone projects 2 inches above the surface and marks the southwest corner of sec. 35, T. 5 N., R. 6 W., and the northwest corner of sec. 2, T. 4 N., R. 6 W., State of Idaho, at the intersection of the township and State lines.

B. M. G (Malheur County, Oreg., C. V. Hodgson, 1915).—In the town of Nyssa, on the east side of the Oregon Short Line Railroad, about 1.5 meters (4.9 feet) west of the east fence along the railroad right of way and 190 meters (623 feet) south of the wagon road leading east to the bridge across the Snake River. The nearest rail followed to be the state of the railroad track is 23.5 meters (77.1 feet) west of the station, which is marked by a bronze tablet in concrete as described in note 1a.¹ The underground mark is a one-half inch iron pipe 8 inches long, the top of which is 10 inches below the surface of the ground. A reference mark, a bronze tablet in concrete, note lla,¹ is in the fence line along the east side of the right of way. **Precise level B. M. G** (Malheur County, Oreg., C. V. Hodgson, 1915).—At Nysse, Oreg., in the capstone of the Oregon Short Line Railroad water tank, 0.1 meter (0.3

¹ See p. 23.

foot) from the north edge and 0.1 meter (0.3 foot) from the east edge. The station is marked by a hole in a horizontal surface.

Granite (Wallows County, Oreg., C. V. Hodgson, 1916).—On the summit of the Wallows Mountains along the divide south of Minam River, in the northeast corner of the unsurveyed sec. 13, T. 5 S., R. 42 E. The peak is flat-topped and covered with large bowlders, in the top of one of which near the south side of the summit the station was placed. The peak has an elevation of about 8700 feet and is best reached from Medical Springs over Forest Service trails. The station is marked by a bronze tablet in rock, as described in note 3.

Bennet (Wallows County, Oreg., C. V. Hodgson, 1916).—The cupola on the Forest Service lookout house on the summit of Bennet Peak, in the SW. ¼ sec. 13, T. 6 S., R. 43 E., W. M. The station is most easily reached over Forest Service trails from Medical Springs.

Ireland Mountain lookout cupols (Baker-Grant Counties, Oreg., C. V. Hodgson, 1916).—The station is the center of the top of the Forest Service lookout house on Ireland Mountain in sec. 29, T. 8 S., R. 36 E., W. M. The lookout house is situated on the high est point of the mountain on the divide between Grant and Baker Counties, near the head of Powder River.

Tower (Umatilla County, Oreg., C. V. Hodgson, 1916).—About 14 miles by road southeast of Lehman Springs in sec. 13, T. 6 S., R. 34 E., W. M. on a bare rocky point about one-fourth mile east of the Forest Service lookout tower on Lookout Mountain. The station is best reached by a wagon road which leads to the ranger station on top. It is marked by a bronze tablet in rock as described in note 3.¹

Precise level B. M. 2782 A (Union County, Oreg., C. V. Hodgson, 1916).—At La Grande, Oreg., in the north face of the brick building of the Foley Hotel in the third course of plaster facing of the wall on the Chestnut Street side. The station is marked by a U. S. Geological Survey bench mark.

Arbuckle (Morrow County, Oreg., C. V. Hodgson, 1916).—About 100 yards east of the highest point of Arbuckle Mountain in sec. 29, T. 4 S., R. 29 E., W. M., directly beneath the top of a large tree. The station is best reached by wagon road from Heppner or Ukiah. It is marked by a bronze tablet in a bowlder as described in note 5.¹

Gate (Umatilla County, Oreg., C. V. Hodgson, 1916).—On the north bank of the Reclamation Service irrigation canal about one-half mile south of Umatilla, Oreg., near the concrete house at the top of the small spillway leading down to the river. The station was used only in making connection with the U.S. Engineers' triangulation and was not marked.

Gravel (Umatilla County, Oreg., C. V. Hodgson, 1916).—At the top of a gravel bank which was being excavated by the railroad for ballast. The station was used only in making connection with the U. S. Engineers' triangulation and was not marked.

43 R (U. S. E.) (Benton County, Oreg., C. V. Hodgson, 1916).—About one-half mile east of the ferry landing, where the rocky ridge from the group of hills on which station *Expansion* is located meets the river. The station is described by the U. S. Engineers as "marked by a small cement patch on the first bench of rock near the ferry landing," and is on the Washington side of the Columbia River, across from Umatilla, Oreg.

Umatilla, Oreg. 44 L (U. S. E.) (Umatilla County, Oreg., C. V. Hodgson, 1916).—About $1\frac{1}{2}$ miles east of Umatilla, Oreg., and about 10 meters (33 feet) back from the bank of the Columbia River on the Oregon side. The station is marked by a cedar hub with a nail in the top.

Tygh (Wasco County, Oreg., C. V. Hodgson, 1916).—About 2 miles east of Friend, Oreg., in the NW. $\frac{1}{2}$ sec. 32, T. 2 S., R. 13 E., in c. bowlder pile near the top of a cultivated knoll on land belonging to Michael Glavey. The station is marked by a bronze tablet in a bowlder as described in note 5.¹

Bald Peter (Wasco County, Oreg., C. V. Hodgson, 1916).—In the extreme southeast corner of the Oregon forest in sec. 1, T. 6 S., R. 11 E., W. M., on the northwest corner of the top of a bald rocky knob. The station is best reached by a wagon road from Wapinitia. It is marked by a bronze tablet in concrete as described in note 1a.¹

Sedum Point (Skamania County, Wash., C. V. Hodgson, 1916).—On a rocky outcrop on the crest of Rock Creek Ridge, about 3½ miles southwest of Hemlock ranger station in sec. 31, T. 4 N., R. 7 E., W. M. The top is reached by trail from the ranger station. Sedum Point is about 4 miles southwest of Bunker Hill. The station is marked by a bronze tablet in rock as described in note 3.⁴ Two witness marks, triangular blazes on trees, note 15,¹ are located, respectively, 15 feet southeast and 15 feet northwest of the station.

Little (Skamania County, Wash., C. V. Hodgson, 1916).—On the highest point of Lookout Mountain on the divide between Washougal River and the south fork of Lewis River and reached by Forest Service trails from Hemlock ranger station. The station is marked by a bronze tablet in rock as described in note 3.¹

station is marked by a bronze tablet in rock as described in note 3.¹ Big Huckleberry (Skamania County, Wash., C. V. Hodgson, 1916).—On the divide between Panther Creek and the Little White Salmon River about 4 miles southeasterly from station *Huckle*, on the highest point of the most southerly of the three summits forming Big Huckleberry Mountain. The station is best reached over the Forest Service trails from Wind River. It is marked by a bronze tablet in concrete as described in note 1a.¹

Observation (Skamania County, Wash., C. V. Hodgson, 1916).—On the highest point of Sister Rocks about 21 miles northeast of Carson. A Forest Service lookout house is on the summit. The station is marked by a bronze tablet in rock as described in note 3,¹ the tablet being cemented in the rock floor beneath the tower. It is best reached from Carson via Government Mineral Springs over the Forest Service trails

in note 3,¹ the tablet being cemented in the rock floor beneath the tower. It is best reached from Carson via Government Mineral Springs over the Forest Service trails. **148 L** (U. S. E.) (Wasco County, Oreg., C. V. Hodgson, 1916).—About eight-tenths mile east of Celilo, Oreg., and 190 feet above the river level, opposite, and 200 feet above mile post No. 101 of the Oregon-Washington Railroad & Navigation Co. tracks. The station is marked by a small pipe cemented in rock.

The station is marked by a small pipe cemented in rock. 149 L (U. S. E.) (Wasco County, Oreg., C. V. Hodgson, 1916).—On the southern edge of the village of Celilo, at the southeast corner of the land reserved for the lockkeeper's quarters. The station is marked by brass monument No. 15.

¹See p. 23.

•

CONVERSION TABLES.

Lengths—Feet to meters (from 1 to 1000 units).

[Reduction factor: 1 foot=0.3048006096 meter.]

Feet.	Meters.	Feet.	Meters.	Feet.	Meters.	Feet.	Meters.	Feet.	Meters.
0	0.0	50	$\begin{array}{c} 15.\ 24003\\ 15.\ 54483\\ 15.\ 84963\\ 16.\ 15443\\ 16.\ 45923\end{array}$	100	30. 48006	150	45.72009	200	60.96012
1	0.30480	1		1	30. 78486	1	46.02489	1	61.26492
2	0.60960	2		2	31. 08966	2	46.32969	2	61.56972
3	0.91440	3		3	31. 39446	3	46.63449	3	61.87452
4	1.21920	4		4	31. 69926	4	46.93929	4	62.17932
5	1.52400	5	16. 76403	5	32.00406	5	47. 24409	5	62. 48412
6	1.82880	6	17. 06883	6	32.30886	6	47. 54890	6	62. 78893
7	2.13360	7	17. 37363	7	32.61367	7	47. 85370	7	63. 09373
8	2.43840	8	17. 67844	8	32.91847	8	48. 15850	8	63. 39853
9	2.74321	9	17. 98324	9	33.22327	9	48. 46330	9	63. 70333
10	3. 04801	60	18. 28804	110	33. 52807	160	48.76810	210	64.00813
1	3. 35281	1	18. 59284	1	33. 83287	1	49.07290	1	64.31293
2	3. 65761	2	18. 89764	2	34. 13767	2	49.37770	2	64.61773
3	3. 96241	3	19. 20244	3	34. 44247	3	49.68250	3	64.92253
4	4. 26721	4	19. 50724	4	34. 74727	4	49.98730	4	65.22733
5	4. 57201	5	19.81204	5	35. 05207	5	$\begin{array}{c} 50.29210\\ 50.59690\\ 50.90170\\ 51.20650\\ 51.51130\end{array}$	5	65. 53213
6	4. 87681	6	20.11684	6	35. 35687	6		6	65. 83693
7	5. 18161	7	20.42164	7	35. 66167	7		7	66. 14173
8	5. 48641	8	20.72644	8	35. 96647	8		8	66. 44653
9	5. 79121	9	21.03124	9	36. 27127	9		9	66. 75133
20	6.09601	70	$\begin{array}{c} 21.33604\\ 21.64084\\ 21.94564\\ 22.25044\\ 22.55525 \end{array}$	120	36. 57607	170	51.81610	220	67.05613
1	6.40081	1		1	36. 88087	1	52.12090	1	67.36093
2	6.70561	2		2	37. 18567	2	52.42570	2	67.66574
3	7.01041	3		3	37. 49047	3	52.73051	3	67.97054
4	7.31521	4		4	37. 79528	4	53.03531	4	68.27534
5	7.62002	5	22. 86005	5	38. 10008	5	53.34011	5	68.58014
6	7.92482	6	23. 16485	6	38. 40488	6	53.64491	6	68.88494
7	8.22962	7	23. 46965	7	38. 70968	7	53.94971	7	69.18974
8	8.53442	8	23. 77445	8	39. 01448	8	54.25451	8	69.49454
9	8.83922	9	24. 07925	9	39. 31928	9	54.55931	9	69.79934
30	9.14402	80	24. 38405	130	39. 62408	180	54. 86411	230	70.10414
1	9.44882	1	24. 68885	1	39. 92888	1	55. 16891	1	70.40894
2	9.75362	2	24. 99365	2	40. 23368	2	55. 47371	2	70.71374
3	10.05842	3	25. 29845	3	40. 53848	3	55. 77851	3	71.01854
4	10.36322	4	25. 60325	4	40. 84328	4	56. 08331	4	71.32334
5 6 7 8 9	$\begin{array}{c} 10.\ 66802\\ 10.\ 97282\\ 11.\ 27762\\ 11.\ 58242\\ 11.\ 88722 \end{array}$	5 6 7 8 9	$\begin{array}{r} \textbf{25.90805} \\ \textbf{26.21285} \\ \textbf{26.51765} \\ \textbf{26.82245} \\ \textbf{27.12725} \end{array}$	5 6 7 8 9	41.14808 41.45288 41.75768 42.06248 42.36728	5 6 7 8 9	56.38811 56.69291 56.99771 57.30251 57.60732	5 6 7 8 9	71.62814 71.93294 72.23774 72.54255 72.84735
40	12. 19202	90	27. 43205	140	42. 67209	190	57.91212	240	73. 15215
1	12. 49682	1	27. 73686	1	42. 97689	1	58.21692	1	73. 45695
2	12. 80163	2	28. 04166	2	43. 28169	2	58.52172	2	73. 76175
3	13. 10643	3	28. 34646	3	43. 58649	3	58.82652	3	74. 06655
4	13. 41123	4	28. 65126	4	43. 89129	4	59.13132	4	74. 37135
5 6 7 8 9	14.32563 14.63043	5 6 7 8 9	28. 95606 29. 26086 29. 56566 29. 87046 30. 17526	5 6 7 8 9	44. 19609 44. 50089 44. 80569 • 45. 11049 45. 41529	5 6 7 8 9	59. 43612 59. 74092 60. 04572 60. 35052 60. 65532	5 6 7 8 9	74.67615 74.98095 75.28575 75.59065 75.89535

53905°-21----3

١

Feet.	Meters.	Feet.	Meters.	Feet.	Meters.	Feet.	Meters.	Feet.	Meters.
250	76. 20015	300	91. 44018	350	106. 68021	400	121. 92024	450	137. 16027
1	76. 50495	1	91. 74498	1	106. 98501	1	122. 22504	1	137. 46507
2	76. 80975	2	92. 04978	2	107. 28981	2	122. 52985	2	137. 76988
3	77. 11455	3	92. 35458	3	107. 59462	3	122. 83465	3	138. 07468
4	77. 41935	4	92. 65939	4	107. 89942	4	123. 13945	4	138. 37948
5	77. 72416	5	92.96419	5	108. 20422	5	123. 44425	5	138. 68428
6	78. 02896	6	93.26899	6	108. 50902	6	123. 74905	6	138. 98908
7	78. 33376	7	93.57379	7	108. 81382	7	124. 05385	7	139. 29388
8	78. 63856	8	93.87859	8	109. 11862	8	124. 35865	8	139. 59868
9	78. 94336	9	94.18339	9	109. 42342	9	124. 66345	9	139. 90348
260	79. 24816	310	94. 48819	360	109.72822	410	124. 96825	460	140. 20828
1	79. 55296	1	94. 79299	1	110.03302	1	125. 27305	1	140. 51308
2	79. 85776	2	95. 09779	2	110.33782	2	125. 57785	2	140. 81788
3	80. 16256	3	95. 40259	3	110.64262	3	125. 88265	3	141. 12268
4	80. 46736	4	95. 70739	4	110.94742	4	126. 18745	4	141. 42748
5	80. 77216	5	96. 01219	5	111. 25222	5	126. 49225	5	141. 73228
6	81. 07696	6	96. 31699	6	111. 55702	6	126. 79705	6	142. 03708
7	81. 38176	7	96. 62179	7	111. 86182	7	127. 10185	7	142. 34188
8	81. 68656	8	96. 92659	8	112. 16662	8	127. 40665	8	142. 64669
9	81. 99136	9	97. 23139	9	112. 47142	9	127. 71146	9	142. 95149
270	82. 29616	320	97. 53620	370	112. 77623	420	128. 01626	470	143. 25629
1	82. 60097	1	97. 84100	1	113. 08103	1	128. 32106	1	143. 56109
2	82. 90577	2	98. 14580	2	113. 38583	2	128. 62586	2	143. 86589
3	83. 21057	3	98. 45060	3	113. 69063	3	128. 93066	3	144. 17069
4	83. 51537	4	98. 75540	4	113. 99543	4	129. 23546	4	144. 47549
5	83. 82017	5	99.06020	5	114. 30023	5	129. 54026	5	144. 78029
6	84. 12497	6	99.36500	6	114. 60503	6	129. 84506	6	145. 08509
7	84. 42977	7	99.66980	7	114. 90983	7	130. 14986	7	145. 38989
8	84. 73457	8	99.97460	8	115. 21463	8	130. 45466	8	145. 69469
9	85. 03937	9	100.27940	9	115. 51943	9	130. 75946	9	145. 99949
280	85. 34417	330	100. 58420	380	115. 82423	430	131. 06426	480	146. 30429
1	85. 64897	1	100. 88900	1	116. 12903	1	131. 36906	1	146. 60909
2	85. 95377	2	101. 19380	2	116. 43383	2	131. 67386	2	146. 91389
3	86. 25857	3	101. 49860	3	116. 73863	3	131. 97866	3	147. 21869
4	86. 56337	4	101. 80340	4	117. 04343	4	132. 28346	4	147. 52350
5	86. 86817	5	102. 10820	5	117. 34823	5	132, 58827	5	147. 82830
6	87. 17297	6	102. 41300	6	117. 65304	6	132, 89307	6	148. 13310
7	87. 47777	7	102. 71781	7	117. 95784	7	133, 19787	7	148. 43790
8	87. 78258	8	103. 02261	8	118. 26264	8	133, 50267	8	148. 74270
9	88. 08738	9	103. 32741	9	118. 56744	9	133, 80747	9	149. 04750

118.87224 119.17704 119.48184 119.78664 120.09144

120.39624 120.70104 121.00584 121.31064 121.61544

390

134. 11227 134. 41707 134. 72187 135. 02667 135. 33147

135. 63627 135. 94107 136. 24587 136. 55067 136. 85547

I

440

149. 35230 149. 65710 149. 96190 150. 26670 150. 57150

150. 87630 151. 18110 151. 48590 151. 79070 152. 09550

Lengths—Feet to meters (from 1 to 1000 units)—Continued.

88. 39218 88. 69698 89. 00178 89. 30658 89. 61138

89.91619 90.22098 90.52578 90.83058 91.13538

I

103. 63221 103. 93701 104. 24181 104. 54661 104. 85141

105. 15621 105. 46101 105. 76581 106. 07061 106. 37541

1

340

1234

Lengths-Feet to meters (from 1 to 1000 units)-Continued.

Feet.	Meters.	Feet.	Meters.	Feet.	Meters.	Feet.	Meters.	Feet.	Meters.
500	152. 40030	550	167. 64034	600	182. 88037	650	198. 12040	700	213. 36043
I	152. 70511	1	167. 94514	1	183. 18517	1	198. 42520	1	213. 66523
2	153. 00991	2	168. 24994	2	183. 48997	2	198. 73000	2	213. 07003
3	153. 31471	3	168. 55474	3	183. 79477	3	199. 03480	3	214. 27483
4	153. 61951	4	168. 85954	4	184. 09957	4	199. 33960	4	214. 57963
5	153. 92431	5	169. 16434	5	184. 40437	5	199. 64440	5	214. 88443
6	154. 22911	6	169. 46914	6	184. 70917	6	199. 94920	6	215. 18923
7	154. 53391	7	169. 77394	7	185. 01397	7	200. 25400	7	215. 49403
8	154. 83871	8	170. 07874	8	185. 31877	8	200. 55880	8	215. 79883
9	155. 14351	9	170. 38354	9	185. 62357	9	200. 86360	9	216. 10363
510	155. 44831	560	170. 68834	610	185. 92837	660	201. 16840	710	216. 40843
1	155. 75311	1	170. 99314	1	186. 23317	1	201. 47320	1	216. 71323
2	156. 05791	2	171. 29794	2	186. 53797	2	201. 77800	2	217. 01803
3	156. 36271	3	171. 60274	3	186. 84277	3	202. 08280	3	217. 32283
4	156. 66751	4	171. 90754	4	187. 14757	4	202. 38760	4	217. 62764
5	156. 97231	5	172. 21234	5	187. 45237	5	202. 69241	5	217. 93244
6	157. 27711	6	172. 51715	6	187. 75718	6	202. 99721	6	218. 23724
7	157. 58192	7	172. 82195	7	188. 06198	7	203. 30201	7	218. 54204
8	157. 88672	8	173. 12675	8	188. 36678	8	203. 60681	8	218. 84684
9	158. 19152	9	173. 43155	9	188. 67158	9	203. 91161	9	219. 15164
520	158. 49632	570	173. 73635	620	188. 97638	670	204. 21641	720	219. 45644
1	158. 80112	1	174. 04115	1	189. 28118	1	204. 52121	1	219. 76124
2	159. 10592	2	174. 34595	2	189. 58598	2	204. 82601	2	220. 06604
3	159. 41072	3	174. 65075	3	189. 89078	3	205. 13081	3	220. 37084
4	159. 71552	4	174. 95555	4	190. 19558	4	205. 43561	4	220. 67564
5	160. 02032	5	175. 26035	5	190. 50038	5	205. 74041	5	220. 98044
6	160. 32512	6	175. 56515	6	190. 80518	6	206. 04521	6	221. 28524
7	160. 62992	7	175. 86995	7	191. 10998	7	206. 35001	7	221. 59004
8	160. 93472	8	176. 17475	8	191. 41478	8	206. 65481	8	221. 89484
9	161. 23952	9	176. 47955	9	191. 71958	9	206. 95961	9	222. 19964
530	161. 54432	580	176. 78435	630	192. 02438	680	207. 26441	730	222. 50445
1	161. 84912	1	177. 08915	1	192. 32918	1	207. 56922	1	222. 80925
2	162. 15392	2	177. 39395	2	192. 63399	2	207. 87402	2	223. 11405
3	162. 45872	3	177. 69876	3	192. 93879	3	208. 17882	3	223. 41885
4	162. 76353	4	178. 00356	4	193. 24359	4	208. 48362	4	223. 72365
5	163. 06833	5	178. 30836	5	193. 54839	5	208. 78842	5	224. 02845
6	163. 37313	6	178. 61316	6	193. 85319	6	209. 09322	6	224. 33325
7	163. 67793	7	178. 91796	7	194. 15799	7	209. 39802	7	224. 63805
8	163. 98273	8	179. 22276	8	194. 46279	8	209. 70282	8	224. 94285
9	164. 28753	9	179. 52756	9	194. 76759	9	210. 00762	9	225. 24765
540	164. 59233	590	179. 83236	640	195. 07239	690	210. 31242	740	225. 55245
1	164. 89713	1	180. 13716	1	195. 37719	1	210. 61722	1	225. 85725
2	165. 20193	2	180. 44196	2	195. 68199	2	210. 92202	2	226. 16205
3	165. 50673	3	180. 74676	3	195. 98679	3	211. 22682	3	226. 46685
4	165. 81153	4	181. 05156	4	196. 29159	4	211. 53162	4	226. 77165
5	 166. 11633 166. 42113 166. 72593 167. 03073 167. 33553 	5	181. 35636	5	196. 59639	5	211. 83642	5	227. 07645
6		6	181. 66116	6	196. 90119	6	212. 14122	6	227. 38125
7		7	181. 96596	7	197. 20599	7	212. 44602	7	227. 68606
8		8	182. 27076	8	197. 51080	8	212. 75083	8	227. 99386
9		9	182. 57557	9	197. 81560	9	213. 05563	9	238. 29566

					•				
Feet.	Meters.	Feet.	Meters.	Feet.	Meters.	Feet.	Meters.	Feet.	Meters.
750	228.66046	800	243. 84049	850	259.08052	900	274. 32055	950	289. 56058
1	228.90526	1	244. 14529	1	259.38532	1	274. 62535	1	289. 86538
2	229.21006	2	244. 45009	2	259.69012	2	274. 93015	2	290. 17018
3	229.51486	3	244. 75489	3	259.99492	3	275. 23495	3	290. 47498
4	229.81966	4	245. 05969	4	260.29972	4	275. 53975	4	290. 77978
5 6 7 8 9	230. 12446 230. 42926 230. 73406 231. 03886 231. 34366	5 6 7 8 9	245. 36449 245. 66929 245. 97409 246. 27889 246. 58369	5 6 7 8 9	260. 60452 260. 90932 261. 21412 261. 51892 261. 82372	. 5 . 7 . 8 9	275.84455 276.14935 276.45415 276.75895 277.06375	5 6 7 8 9	291.0845 291.3893 291.6941 291.9989 292.3037
760	231.64846	810	246. 88849	860	262. 12852	910	277.36855	960	292. 6085
1	231.95326	1	247. 19329	1	262. 43332	1	277.67336	1	292. 9133
2	232.25806	2	247. 49809	2	262. 73813	2	277.97816	2	293. 21819
3	232.56287	3	247. 80290	3	263. 04293	3	278.28296	3	293. 5229
4	232.86767	4	248. 10770	4	263. 34773	4	278.58776	4	293. 82779
5	233. 17247	5	248. 41250	5	263. 65253	5	278. 89256	5	204. 13259
6	233. 47727	6	248. 71730	6	263. 95733	6	279. 19736	6	204. 43739
7	233. 78207	7	249. 02210	7	264. 26213	7	279. 50216	7	204. 74219
8	234. 08687	8	249. 32690	8	264. 56693	8	279. 80696	8	205. 04699
9	234. 39167	9	249. 63170	9	264. 87173	9	280. 11176	9	295. 35179
770	234. 69647	820	249.93650	870	265. 17653	920	280. 41656	970	295. 65659
1	235. 00127	1	250.24130	1	265. 48133	1	280. 72136	1	295. 96139
2	235. 30607	2	250.54610	2	265. 78613	2	281. 02616	2	296. 26619
3	235. 61087	3	250.85090	3	266. 09093	3	281. 33096	3	296. 57099
4	235. 91567	4	251.15570	4	266. 39573	4	281. 63576	4	296. 87579
5	236. 22047	5	251. 46050	5	266. 70053	5	281. 94056	5	297.18059
6	236. 52527	6	251. 76530	6	267. 00533	6	282. 24536	6	297.48539
7	236. 83007	7	252. 07010	7	267. 31013	7	282. 55017	7	297.79020
8	237. 13487	8	252. 37490	8	267. 61494	8	282. 85497	8	298.09500
9	237. 43967	9	252. 67971	9	267. 91974	9	283. 15977	9	298.39980
780	237.74448	830	252.984.1	880	208. 22454	930	283. 46457	.980	298. 70460
1	238.04928	1	253.28931	1	208. 52934	1	283. 76937	1	299. 00940
2	238.35408	2	253.59411	2	208. 83414	2	284. 07417	2	299. 31420
3	238.65888	3	253.89891	3	209. 13894	3	284. 37897	3	299. 61900
4	238.96368	4	254.20371	4	209. 44374	4	284. 68377	4	299. 92380
5 6 7 8 9	239. 26848 239. 57328 239. 87808 240. 18288 240. 48768	5 6 7 8 9	254. 50851 254. 81331 255. 11811 255. 42291 255. 72771	5 6 7 8 9	269.74854 270.05334 270.35814 270.66294 270.96774	5 67 89	284.98867 285.29337 285.59817 285.90297 286.20777	5 6 7 8 9	300. 22860 300. 53340 300. 83820 301. 14300 301. 44780
790	240. 79248	840	256.03251	890	271. 27254	940	286.51257	990	301. 75260
1	241. 09728	1	256.33731	1	271. 57734	1	286.81737	1	302. 05740
2	241. 40208	2	256.64211	2	271. 88214	2	287.12217	2	302. 36220
3	241. 70688	3	256.94691	3	272. 18694	3	287.42697	3	302. 66701
4	242. 01168	4	257.25171	4	272. 49174	4	287.73178	4	302. 97181
5 6 7 8 9	242. 31648 242. 62129 242. 92609 243. 23089 243. 53569	5 6 7 8 9	257.55652 257.86132 258.16612 258.47092 258.77572	5 6 7 8 9	272. 79655 273. 10135 273. 40615 273. 71095 274. 01575	5 6 7 8 9	288. 03658 288. 34138 288. 64618 288. 95098 289. 25578	5 67 89	303. 27661 303. 58141 303. 88621 304. 19101 304. 49581

Lengths-Feet to meters (from 1 to 1000 units)-Continued.

Lengths-Meters to feet (from 1 to 1000 units).

[Reduction factor: 1 meter=3.280833333 feet.]

Mo- ters.	Feet.	Me- ters.	Feet.	Me- ters.	Feet.	Me- ters.	Feet.	Me- ters.	Feet.
0 1 2 3 4	3. 28083 6. 56167 9. 84250 13. 12333	50 1 2 3 4	164.04167 167.32250 170.60333 173.88417 177.16500	100 . 1 . 2 . 3 . 4	328.08333 331.36417 334.64500 337.92583 341.20667	150 1 2 3 4	492.12500 495.40583 498.68667 501.96750 505.24833	200 1 2 3 4	656.16667 659.44750 662.72833 666.00917 669.29000
5 6 7 8 9	16. 40417 19. 68500 22. 96583 26. 24667 29. 52750	5 6 7 8 9	180. 44583 183. 72667 187. 00750 190. 28833 193. 56917	5 6 7 8 9	344. 48750 347. 76833 351. 04917 354. 33000 357. 61083	5 6 7 8 9	508. 52917 511. 81000 515. 09083 518. 37167 521. 65250	5 67 89	672. 57083 675. 85167 679. 13250 682. 41333 685. 69417
10	32. 80833	60	196. 85000	110	360. 89167	160	524. 93333	210	688.97500
1	36. 08917	1	200. 13083	1	364. 17250	1	528. 21417	1	692.25583
2	39. 37000	2	203. 41167	2	367. 45333	2	531. 49500	2	695.53667
3	42. 65083	3	206. 69250	3	370. 73417	3	534. 77583	3	698.81750
4	45. 93167	4	209. 97333	4	374. 01500	4	538. 05667	4	702.09833
557 89	49.21250 52.49333 55.77417 59.05500 62.33583	5 6 7 8 9	213.25417 216.53500 219.81583 223.09667 226.37750	5 6 7 8 9	377. 29583 380. 57667 383. 85750 387. 13833 390. 41917	5 6 7 8 9	541. 33750 544. 61833 547. 89917 551. 18000 554. 46083	5 6 7 8 9	705. 37917 708. 66000 711. 94083 715. 22167 718. 50250
20	65. 61667	70	229. 65833	120	393. 70000	170	557.74167	220	721.78333
1	68. 89750	1	232. 93917	1	396. 98083	1	561.02250	1	725.06417
2	72. 17833	2	236. 22000	2	400. 26167	2	564.30333	2	728.34500
3	75. 45917	3	239. 50083	3	403. 54250	3	567.58417	3	731.62583
4	78. 74000	4	242. 78167	4	406. 82333	4	570.86500	4	734.90667
56789	82.02083	5	246.06250	5	410. 10417	5	574. 14583	5	738. 18750
	85.30167	6	949.34333	6	413. 38500	6	577. 42667	6	741. 46833
	88.58250	7	252.62417	7	416. 66583	7	580. 70750	7	744. 74917
	91.86333	8	255.90500	8	419. 94667	8	583. 98833	8	748. 03000
	95.14417	9	259.18583	9	423. 22750	9	587. 26917	9	751. 31083
30	98. 42500	80	262. 46667	130	426.50833	180	590, 55000	230	754. 59167
1	101. 70583	1	265. 74750	1	429.78917	1	593, 83083	1	757. 87250
2	104. 98667	2	269. 02833	2	433.07000	2	597, 11167	2	761. 15333
3	108. 26750	3	272. 30917	3	436.35083	3	600, 39250	3	764. 43417
4	111. 54833	4	275. 59000	4	439.63167	4	602, 67333	4	767. 71500
5 6 7 8 9	114.82917 118.11000 121.39083 124.67167 127.95250	5 6 7 8 9	278. 87083 282. 15167 285. 43250 288. 71333 291. 99417	5 6 7 8 9	442. 91250 446. 19333 449. 47417 452. 75500 456. 03583	5 67 89	606.95417 610.23500 613.51583 616.79667 620.07750	5 6 7 8 9	770. 99583 774. 27667 777. 55750 780. 83833 784. 11917
40	131.23333	90	295. 27500	140	459.31667	190	623.35833	240	787, 40000
1	134.51417	1	298. 55583	1	462.59750	1	626.63917	1	790, 68083
2	137.79500	2	301. 83667	2	465.87833	2	629.92000	2	793, 96167
3	141.07583	3	305. 11750	3	469.15917	3	633.20083	3	797, 24250
4	144.35667	4	308. 39833	4	472.44000	4	636.48167	4	800, 52333
5	147. 63750	5	311.67917	5	475. 72083	5	639. 76250	5	803. 80417
6	150. 91833	6	314.96000	6	479. 00167	6	643. 04333	6	807. 08500
7	154. 19917	7	318.24083	7	482. 28250	7	646. 32417	7	810. 36583
8	157. 48000	8	321.52167	8	485. 56333	8	649. 60500	8	813. 64667
9	160. 76083	9	324.80250	9	488. 84417	9	652. 88583	9	816. 92750

Lengths—Meters t	to feet (fi	rom 1 to) 1000 units)	-Continued.
				•

Me- ters.	Feet.	Me- ters.	Feet.	Me- ters.	Feet.	Me- ters.	Feet.	Me- ters.	Feet.
250	820. 20833	300	984. 25000	350	1, 148. 29167	400	1, 312. 33333	450	1, 476. 37500
1	823. 48917	1	987. 53083	1	1, 151. 57250	1	1, 315. 61417	1	1, 479. 65583
2	826. 77000	2	990. 81167	2	1, 154. 85333	2	1, 318. 89500	2	1, 482. 93667
3	830. 05083	3	994. 09250	3	1, 158. 13417	3	1, 322. 17583	3	1, 486. 21750
4	833. 33167	4	997. 37333	4	1, 161. 41500	4	1, 325. 45667	4	1, 489. 49833
5	836. 61250	5	1,000.65417	5	1, 164. 69583	5	1, 328. 73750	5	1, 492. 77917
6	839. 89333	6	1,003.93500	6	1, 167. 97667	6	1, 332. 01833	6	1, 496. 06000
7	843. 17417	7	1,007.21583	7	1, 171. 25750	7	1, 335. 29917	7	1, 499. 34083
8	846. 45500	8	1,010.49667	8	1, 174. 53833	8	1, 338. 58000	8	1, 502. 62167
9	849. 73583	9	1,013.77750	9	1, 177. 81917	9	1, 341. 86083	9	1, 505. 90250
260	853.01667	310	1,017.05833	360	1, 181. 10000	410	1, 345. 14167	460	1,509.18333
1	856.29750	1	1,020.33917	1	1, 184. 38083	1	1, 348. 42250	1	1,512.46417
2	859.57833	2	1,023.62000	2	1, 187. 66167	2	1, 351. 70333	2	1,515.74500
3	862.85917	3	1,026.90083	3	1, 190. 94250	3	1, 354. 98417	3	1,519.02583
4	866.14000	4	1,030.18167	4	1, 194. 22333	4	1, 358. 26500	4	1,522.30667
5	869. 42083	5	1,033.46250	5	$\begin{array}{c} 1, 197. 50417 \\ 1, 200. 78500 \\ 1, 204. 06583 \\ 1, 207. 34667 \\ 1, 210. 62750 \end{array}$	5	1, 361. 54583	5	1, 525. 58750
6	872. 70167	6	1,036.74333	6		6	1, 364. 82667	6	1, 528. 86833
7	875. 98250	7	1,040.02417	7		7	1, 368. 10750	7	1, 532. 14917
8	879. 26333	8	1,043.30500	8		8	1, 371. 38833	8	1, 535. 43000
9	882. 54417	9	1,046.58583	9		9	1, 374. 66917	9	1, 538. 71083
270	885. 82500	320	1,049.86667	370	1,213.90833	420	1, 377. 95000	470	1, 541. 99167
1	889. 10583	1	1,053.14750	1	1,217.18917	1	1, 381. 23083	1	1, 545. 27250
2	892. 38667	2	1,056.42833	2	1,220.47000	2	1, 384. 51167	2	1, 548. 55333
3	895. 66750	3	1,059.70917	3	1,223.75083	3	1, 387. 79250	3	1, 551. 83417
4	898. 94833	4	1,062.99000	4	1,227.03167	4	1, 391. 07333	4	1, 555. 11500
5	902. 22917	5	1,066.27083	5	1,230.31250	5	1, 394. 35417	5	1, 558. 39583
6	905. 51000	6	1,069.55167	6	1,233.59333	6	1, 397. 63500	6	1, 561. 67667
7	908. 79083	7	1,072.83250	7	1,236.87417	7	1, 400. 91583	7	1, 564. 95750
8	912. 07167	8	1,076.11333	8	1,240.15500	8	1, 404. 19667	8	1, 568. 23833
9	915. 35250	9	1,079.39417	9	1,243.43583	9	1, 407. 47750	9	1, 571. 51917
280	918.63333	330	1,082.67500	380	1, 246. 71667	430	1, 410. 75833	480	1,574.80000
1	921.91417	1	1,085.95583	1	1, 249. 99750	1	1, 414. 03917	• 1	1,578.08083
2	925.19500	2	1,089.23667	2	1, 253. 27833	2	1, 417. 32000	2	1,581.36167
3	928.47583	3	1,092.51750	3	1, 256. 55917	3	1, 420. 60083	3	1,584.64250
4	931.75667	4	1,095.79833	4	1, 259. 84000	4	1, 423. 88167	4	1,587.92333
5 6 7 8 9	935.03750 938.31833 941.59917 944.88000 948.16083	5 6 7 8 9	1,099.07917 1,102.36000 1,105.64083 1,108.92167 1,112.20250	. 5 7 8 9	1,263.12083 1,266,40167 1,269.68250 1,272.96333 1,276.24417	5 6 7 8 9	1, 427. 16250 1, 430. 44333 1, 433. 72417 1, 437. 00500 1, 440. 28583	5 6 7 8 9	1,591.20417 1,594.48500 1,597.76583 1,601.04667 1,604.32750
290	951. 44167	340	1, 115. 48333	390	1, 279. 52500	440	1, 443. 56667	490	1,607.60833
1	954. 72250	1	1, 118. 76417	1	1, 282. 80583	1	1, 446. 84750	1	1,610.88917
2	958. 00333	2	1, 122. 04500	2	1, 286. 08667	2	1, 450. 12833	2	1,614.17000
3	961. 28417	3	1, 125. 32583	3	1, 289. 36750	3	1, 453. 40917	3	1,617.45083
4	964. 56500	4	1, 128. 60667	4	1, 292. 64833	4	1, 456. 69000	4	1,620.73167
5	967. 84583	5	1, 131. 88750	5	1, 295. 92917	5	1, 459. 97083	5	1, 624. 01250
6	971. 12667	6	1, 135. 16833	6	1, 299. 21000	6	1, 463. 25167	6	1, 627. 29333
7	974. 40750	7	1, 138. 44917	7	1, 302. 49083	7	1, 466. 53250	7	1, 630. 57417
8	977. 68833	8	1, 141. 73000	8	1, 305. 77167	8	1, 469. 81333	8	1, 633. 85500
9	980. 96917	9	1, 145. 01083	9	1, 309. 05250	9	1, 473. 09417	9	1, 637. 13588

38

Lengths-Meters	to feet (from	1 to 1000 units)Continued.

Me- ters.	Feet.	Me- ters.	Feet.	Me- ters.	Feet.	Mo- ters.	Feet.	Me- ters.	Feet.
500	1,640.41667	550	1,804.45833	600	1,968.50000	650	2, 132, 54167	700	2, 296, 58383
1	1,643.69750	1	1,807.73917	1	1,971.78083	1	2, 135, 82250	1	2, 299, 86417
2	1,646.97833	2	1,811.02000	2	1,975.06167	2	2, 139, 10333	2	2, 303, 14500
3	1,650.25917	3	1,814.30083	3	1,978.34250	3	2, 142, 38417	3	2, 306, 42583
4	1,653.54000	4	1,817.58167	4	1,981.62333	4	2, 145, 66500	4	2, 309, 70667
56789	1,656.82083	5	1,820.86250	5	1,984.90417	5	2, 148. 94583	5	2, 312, 98750
	1,660.10167	6	1,824.14333	6	1,988.18500	6	2, 152. 22667	6	2, 316, 26833
	1,663.38250	7	1,827.42417	7	1,991.46583	7	2, 155. 50750	7	2, 319, 54917
	1,666.66333	8	1,830.70500	8	1,994.74667	8	2, 158. 78833	8	2, 322, 83000
	1,669.94417	9	1,833.98583	9	1,998.02750	9	2, 162. 06917	9	2, 326, 11083
510	1,673.22500	560	1,837.26667	610	2,001.30833	660	2, 165. 35000	710	2, 329, 39167
1	1,676.50583	1	1,840.54750	1	2,004.58917	1	2, 168. 63083	1	2, 332, 67250
2	1,679.78667	2	1,843.82833	2	2,007.87000	2	2, 171. 91167	2	2, 335, 95333
3	1,683.06750	3	1,847.10917	3	2,011.15083	3	2, 175. 19250	3	2, 339, 23417
4	1,686.34833	4	1,850.39000	4	2,014.43167	4	2, 178. 47333	4	2, 342, 51500
56789	1,689.62917	5	1, 853. 67083	5	2,017.71250	5	2, 181. 75417	5	2, 345. 79583
	1,692.91000	6	1, 856. 95167	6	2,020.99333	6	2, 185. 03500	6	2, 349. 07667
	1,696.19083	7	1, 860. 23250	7	2,024.27417	7	2, 188. 31583	7	2, 352. 35750
	1,699.47167	8	1, 863. 51333	8	2,027.55500	8	2, 191. 59667	8	2, 355. 63833
	1,702.75250	9	1, 866. 79417	9	2,030.83583	9	2, 194. 87750	9	2, 358. 91917
520	1, 706. 03333	570	1, 870. 07500	620	2,034.11667	670	2, 198. 15833	720	2, 362. 20000
1	1, 709. 31417	1	1, 873. 35583	1	2,037.39750	1	2, 201. 43917	1	2, 365. 48083
2	1, 712. 59500	2	1, 876. 63667	2	2,040.67833	2	2, 204. 72000	2	2, 368. 76167
3	1, 715. 87583	3	1, 879. 91750	3	2,043.95917	3	2, 208. 00083	3	2, 372. 04250
.4	1, 719. 15667	4	1, 883. 19833	4	2,047.24000	4	2, 211. 28167	4	2, 375. 32333
5	1,722.43750	5	1, 886. 47917	5	2,050.52083	5	2, 214. 56250	5	2, 378. 60417
6	1,725.71833	6	1, 889. 76000	6	2,053.80167	6	2, 217. 84333	6	2, 381. 88500
7	1,728.99917	7	1, 893. 04083	7	2,057.08250	7	2, 221. 12417	7	2, 385. 16583
8	1,732.28000	8	1, 896. 32167	8	2,060.36333	8	2, 224. 40500	8	2, 388. 44667
9	1,735.56083	9	1, 899. 60250	9	2,063.64417	9	2, 227. 68583	9	2, 391. 72750
53 0	1, 738. 84167	580	1,902.88333	630	2,066.92500	680	2, 230. 96667	730	2, 395. 00833
1	1, 742. 12250	1	1,906.16417	1	2,070.20583	1	2, 234. 24750	1	2, 398. 28917
2	1, 745. 40333	2	1,909.44500	3	2,073.48667	2	2, 237. 52833	2	2, 401. 57000
3	1, 748. 68417	3	1,912.72583	3	2,076.76750	3	2, 240. 80917	3	2, 404. 85083
4	1, 751. 96500	4	1,916.00667	4	2,080.04833	4	2, 244. 09000	4	2, 408. 13167
56 78 9	1,758.52667 1,761.80750 1,765.08833	5 6 7 8 9	1,919.28750 1,922.56833 1,925.84917 1,929.13000 1,932.41083	5 6 7 8 9	2,083.32917 2,086.61000 2,089.89083 2,093.17167 2,096.45250	5 6 7 8 9	2, 247. 37083 2, 250. 35167 2, 253. 93250 2, 257. 21333 2, 260. 49417	567 89	2, 411. 41250 2, 414. 69333 2, 417. 97417 2, 421. 25500 2, 424. 53583
54 0	1,774.93083	590 1 2 3 4	1,935.69167 1,938.97250 1,942.25333 1,945.53417 1,948.81500	640 1 2 3 4	2,099.73333 2,103 01417 2,106.29500 2,109.57583 2,112.85667	690 1 2 3 4	2, 263. 77500 2, 267. 05583 2, 270. 33667 2, 273. 61750 2, 276. 89833	740 1 2 3 4	2, 427. 81667 2, 431. 09750 2, 434. 37833 2, 437. 65917 2, 440. 94000
1	5 1,788.05417	5	1,952.09583	5	2, 116, 13750	5	2, 280, 17917	5	2, 444. 22083
	5 1,791.33500	6	1,955.37667	6	2, 119, 41833	6	2, 283, 46000	6	2, 447. 50167
	7 1,794.61583	7	1,958.65750	7	2, 122, 69917	7	2, 286, 74083	7	2, 450. 78250
	8 1,797.89667	8	1,961.93833	8	2, 125, 98000	8	2, 290, 02167	8	2, 454. 06333
	9 1,801.17750	9	1,965.21917	9	2, 129, 26083	9	2, 293, 30250	9	2, 457. 34417

Me- ters.	Feet.	Me- ters.	Feet.	Me- ters.	Feet.	Me- ters.	Feet.	Mo- ters.	Feet.
750	2, 460. 62500	800	2, 624. 66667	850	2, 788. 70833	900	2, 952. 75000	950	3, 116. 79167
1	2, 463. 90583	1	2, 627. 94750	1	2, 791. 98917	1	2, 956. 03083	1	3, 120. 07250
2	2, 467. 18667	2	2, 631. 22833	2	2, 795. 27000	2	2, 959. 31167	2	3, 123. 35333
3	2, 470. 46750	3	2, 634. 50917	3	2, 798. 55083	3	2, 962. 59250	3	3, 126. 63417
4	2, 473. 74833	4	2, 637. 79000	4	2, 801. 83167	4	2, 965. 87333	4	3, 129. 91500
5	2, 477. 02917	5	2, 641. 07083	5	2,805.11250	5	2, 969. 15417	5	3, 133. 19583
6	2, 480. 31000	6	2, 644. 35167	6	2,808.39333	6	2, 972. 43500	6	3, 136. 47667
7	2, 483. 59983	7	2, 647. 63250	7	2,811.67417	7	2, 975. 71583	7	3, 139. 75750
8	2, 486. 87167	8	2, 650. 91333	8	2,814.95500	8	2, 978. 99667	8	3, 143. 03833
9	2, 490. 15250	9	2, 654. 19417	9	2,818.23583	9	2, 982. 27750	9	3, 146. 31917
760	2, 493. 43333	810	2, 657. 47500	860	2,821.51667	910	2, 985. 55833	960	3, 149. 6000
1	2, 496. 71417	1	2, 660. 75583	1	2,824.79750	1	2, 988. 83917	1	3, 152. 88083
2	2, 499. 99500	2	2, 664. 03667	2	2,828.07833	2	2, 992. 12000	2	2, 156. 16167
3	2, 503. 27583	3	2, 667. 31750	3	2,831.35917	3	2, 995. 40083	3	3, 159. 44250
4	2, 506. 55667	4	2, 670. 59833	4	2,834.64000	4	2, 998. 68167	. 4	3, 162. 72333
5	2,509.83750	5	2,673.87917	5	2,837.92083	5	3,001.96250	5	3, 166.00417
6	2,513.11833	6	2,677.16000	6	2,841.20167	6	3,005.24333	6	3, 169.28500
7	2,516.39917	7	2,680.44083	7	2,844.48250	7	3,008.52417	7	3, 172.56583
8	2,519.68000	8	2,683.72167	8	2,847.76333	8	3,011.80500	8	3, 175.84667
9	2,522.96083	9	2,687.00250	9	2,851.04417	9	3,015.08583	9	3, 179.12750
770	2, 526. 24167	820	2,690.28333	870	2, 854. 32500	920	3,018.36667	970	3, 182. 40833
1	2, 529. 52250	1	2,693.56417	1	2, 857. 60583	1	3,021.64750	1	3, 185. 68917
2	2, 532. 80333	2	2,696.84500	2	2, 860. 88667	2	3,024.92833	2	2, 188. 97000
3	2, 536. 08417	3	2,700.12583	3	2, 864. 16750	3	3,028.20917	3	3, 192. 25083
4	2, 539. 36500	4	2,703.40667	4	2, 867. 44833	4	3,031.49000	4	3, 195. 53167
5	2,542.64583	5	2,706.68750	5	2,870.72917	5	3,034.77083	5	3, 198. 81250
6	2,545.92667	6	2,709.96833	6	2,874.01000	6	3,038.05167	6	3, 202. 09333
7	2,549.20750	7	2,713.24917	7	2,877.29083	7	3,041.33250	7	3, 205. 37417
8	2,552.48833	8	2,716.53000	8	2,880.57167	8	3,044.61333	8	3, 208. 65500
9	2,555.76917	9	2,719.81083	9	2,883.85250	9	3,047.89417	9	3, 211. 93583
780	2,559.05000	830	2, 723. 09167	880	2, 887. 13333	930	3,051.17500	980	3, 215. 21667
1	2,562.33083	1	2, 726. 37250	1	2, 890. 41417	1	3,054.45583	1	3, 218. 49750
2	2,565.61167	2	2, 729. 65333	2	2, 893. 69500	2	3,057.73667	2	3, 221. 77833
3	2,568.89250	3	2, 732. 93417	3	2, 896. 97583	3	3,061.01750	3	3, 225. 05917
4	2,572.17333	4	2, 736. 21500	4	2, 900. 25667	4	3,064.29833	4	3, 228. 34000
5	2, 575. 45417	5	2, 739. 49583	5	2,903.53750	5	3,067.57917	5	3, 231. 62083
6	2, 578. 73500	6	2, 742. 77667	6	2,906,81833	6	3,070.86000	6	3, 234. 90167
7	2, 582. 01583	7	2, 746. 05750	7	2,910.09917	7	3,074.14083	7	3, 238. 18250
8	2, 585. 29667	8	2, 749. 33833	8	2,913.38000	8	3,077.42167	8	3, 241. 46333
9	2, 588. 57750	9	2, 752. 61917	9	2,916.66083	9	3,080.70250	9	3, 244. 74417
790	2, 591. 85833	840	2, 755. 90000	890	2,919.94167	940	3,083.98333	990	3, 248. 02500
1	2, 595. 13917	1	2, 759. 18083	1	2,923.22250	1	2,087.26417	1	3, 251. 30583
2	2, 598. 42000	2	2, 762. 46167	2	2,926.50333	2	3,090.54500	2	3, 254. 58667
3	2, 601. 70083	3	2, 765. 74250	3	2,929.78417	3	3,093.82583	3	3, 257. 86750
4	2, 604. 98167	4	2, 769. 02333	4	2,933.06500	4	3,097.10667	4	3, 261. 14833
• 5	2,608.26250	5	2,772.30417	5	2,936.34583	5	3,100.38750	5	3, 264. 42917
6	2,611.54333	6	2,775.58500	6	2,939.62667	6	3,103.66833	6	3, 267. 71000
7	2,614.82417	7	2,778.86583	7	2,942.90750	7	3,106.94917	7	3, 270. 99083
8	2,618.10500	8	2,782.14667	8	2,946.18833	8	3,110.23000	8	3, 274. 27167
9	2,621.38583	9	2,785.42750	9	2,949.46917	9	3,113.51083	9	3, 277. 55250

Lengths—Meters to feet (from 1 to 1000 units)—Continued.

GENERAL STATEMENT.

The remaining pages of this publication are devoted to a description of field methods, tabulations of cost data for the various operations, and to a discussion of errors and methods of adjustment. The condition equations and other data used in making the adjustments are also included.

While these may be of little interest to the engineer who desires only the geographical positions of control points in some particular area, there are a number of reasons why they should be published. The methods employed in the field work are of interest and value to local organizations carrying on detailed triangulation. Cost data for all public work should be published for the information of those interested and as an evidence that the work is being performed economically. For the information of those using the data the size of the errors in the observations and the distribution of the discrepancies in the adjustment should be evident in the published results. Finally, the condition equations and other adjustment data should be published in order that future work may be started with certainty at any point without recourse to the original data; publication of complete results is the best insurance against loss of original records by fire or otherwise. In any future reprints of the data for this arc of triangulation only the preceding portions of this publication need be printed.

The methods employed in the field will be described very briefly first, with the cost factors for the various operations.

RECONNOISSANCE AND SIGNAL BUILDING.

Detailed specifications for reconnoissance for precise triangulation, such as governed the selection of the stations on this arc, are given in U. S. Coast and Geodetic Survey Special Publication No. 19. In brief, the principal requirements are that such stations and figures should be selected as to make the total cost of reconnoissance, building, and observing a minimum, that the R_1 between bases should be about 100 and should not exceed 150, that Laplace stations should be provided at intervals of from four to six figures, that connections to precise level bench marks should be provided at intervals of 100 to 150 miles, and that if the line of a figure in the direction of progress is more than 40 miles in length, then additional stations, which need not be occupied, should be interpolated.

The reconnoissance for this arc was made by J. S. Bilby, signalman, in the early summer of 1915, and for the first time a motor truck was used as a means of transportation by the reconnoissance party. It had previously been thought that trucks could not be economically used on such work in mountainous regions, but although a large percentage of the stations were mountain stations and the roads were very poor on the average, yet the extremely good progress made and the low costs of the reconnoissance demonstrated conclusively that horse or mule teams on reconnoissance are expensive and should be abandoned in the future.

Only 64 working days were consumed by Mr. Bilby in doing the reconnoissance and in preparing a large part of the stations. The reconnoissance started at a point near Pocatello, Idaho, and extended to a junction with the California-Washington arc in the vicinity of Portland, Oreg. The reconnoissance from the transcontinental arc to the vicinity of Pocatello had been done during a previous season in connection with another scheme of triangulation. The stations from the line Ogden Peak-Pilot Peak of the transcontinental arc in Utah to the Stanfield base in Oregon were prepared for the observer by setting the marks and building the stands for the theodolite. So long as the stations were being prepared for observing the party consisted of two men besides the chief of party, but west of the Stanfield base only one man besides the chief of party was employed. The total cost of the reconnoissance and signal building for the entire arc, including \$310 spent in 1916 in preparing the stations on the western end, was only \$1870. Some of the principal cost factors are tabulated below.

Length of main scheme of reconnoissance, in statute miles	
Area, in square statute miles	20 100
New points selected	
Stations prepared	39
Cost per mile of progress, in dollars	3.60
Total miles run by truck	4262
Miles per gallon of gasoline	113
Cost per mile, running expenses of truck, not including any depreciation	•
of truck or tires, in cents.	2.3
· · · · · · · · · · · · · · · · · · ·	

HORIZONTAL ANGLE OBSERVATIONS.

INSTRUCTIONS GOVERNING THE OBSERVATIONS.

The instructions for the observation of horizontal angles on precise triangulation are given in detail in U. S. Coast and Geodetic Survey Special Publication No. 19 and will not be repeated here. In brief, such instruments and methods are used as will insure that the maximum closing error of a triangle is not greater than 3" with an average of about 1". The frequency of bases, strength of figures, and accuracy of angle measures must be such that the measured length of a base will not differ by more than 1 part in 25 000 from the length as computed through the triangulation from the preceding base.

The general instructions for precise triangulation as given in Special Publication No. 19 were amended for this arc in the following particulars:

All observations for horizontal angles between precise stations were to be made at night, unless to do so would materially delay the party. In order to minimize the effect of temperature on the instrument, the circle was shifted approximately 195° in azimuth between each two positions, thus making the alternate settings 180° from those shown in the table in page 35 of Special Publication No. 19.

An effort was made to make all observations for elevations between the hours of 1 and 4 in the afternoon, the period of greatest constancy in refraction, but the instructions permitted some of the observations of vertical angles to be made at night provided a portion of the observations had been made during daylight, and providing also that those stations which had been observed upon during the day were reobserved at night, along with the remaining stations. In that manner a rough measure was obtained of the change in refraction between the day and night observations, and the night observations could be corrected accordingly. The errors of the trigonometric leveling will be discussed later (p. 71), but it may be said here that night observations for elevations are unsatisfactory, even with the precautions indicated above. If connections are made to bench marks at the intervals prescribed on this arc, the intermediate elevations are sufficiently accurate to reduce the lengths of the lines to sea-level lengths, but they should be used with caution in topographic mapping. Night observations for verticals were made only when it was necessary to do so in order not to delay the progress of the work.

The instructions for azimuth work along the line were to the effect that besides the Laplace stations, which were located four to six figures apart, primary azimuth observations were to be made at intervals of from 40 to 80 miles, with the lower limit preferred. At the Laplace stations azimuth observations were to be made on two nights with an accuracy for the station represented by a probable error of not more than ± 0.33 , while at the primary azimuth stations a probable error not greater than 0.5 was permitted, and the observations could be made on a single night. In no case were a night's observations for azimuth to depend upon less than 10 positions of the circle.

INSTRUMENTS AND METHODS.

The instrument used for the horizontal angle observations was a 12-inch direction theodolite, made in the shops of the U. S. Coast and Geodetic Survey, and read to single seconds by each of three micrometer microscopes equally spaced about the circle. Practically all the precise triangulation of the Survey since the early nineties has been done by precise theodolites of this type. A full description of the instrument is given in Appendix 8, Report for 1894.

The signal lamps used were the carbide type with $6\frac{1}{2}$ " reflecting Mangin lenses, delivering about 1500-beam candlepower at 100 feet, with an angle of dispersion of the principal cone of rays of about 7°. These lamps under ordinarily favorable atmospheric conditions are visible to the unaided eye for 40 miles and under very favorable conditions in the West for more than 100 miles. The longest line observed over was 133 miles in length. This is practically the limit of visibility for these lamps.

The heliotropes used by the light keepers, upon which observations for vertical angles were made, were of the box type, with either 3¾-inch or 6-inch mirrors, depending upon the length of line. The 6-inch mirror has since that time been adopted as the standard size for all lengths of line.

A vertical circle with 6-inch graduated arc was used for the verticalangle observations for trigonometric leveling, and also for the time observations for azimuth.

ORGANIZATION OF PARTY.

The observing party consisted of the writer, who was the chief of party and observer, a recorder, and two truck drivers. The party lived in tents and cooked their own meals over an open fire in order to avoid the extra weight of a cook and his outfit. All members of the party helped equally in cooking, making and breaking camp, and in packing. The outfit of instruments, camp equipment, and stores of the observing party varied in weight from 2500 to 3500 pounds, and was transported on two three-quarter ton trucks.

Eight light keepers were employed and assigned singly to stations. Each had his own camp outfit, which with instruments, carbide, and provisions varied from 400 to 600 pounds in weight. Each light keeper was given a schedule of the stations which he was to occupy and those to which he was to show a light. He was trained in the visual use of the International Morse code for signaling with the signal lamps and heliotropes, in order that the observer could keep in close touch with him and keep him informed of the observer's requirements. Detailed "Instructions to Light keepers" are given in Special Publication No. 65.

The light keepers moved from station to station by means of hired teams, pack animals, and railroads. On the western end of the arc, where the distances between stations were shorter, one of the trucks of the observing party was often used to advantage in moving the light keepers.

TIME SPENT ON OBSERVING.

The observations on this arc were completed during the seasons of 1915 and 1916. For the first season lack of funds prevented beginning the work until the middle of June, and a total of only 4.4 months was spent in the field. Because of unfavorable observing conditions three months were consumed on the first two figures of the scheme, during which time only six primary stations and four secondaries were occupied. Several of the lines were more than 100 miles in length. After the long lines were completed an average of eight stations per month was made, and the close of the season found the observing completed to the Idaho-Oregon line.

The following season work was begun in the early part of May. Because of the heavy snows on the mountains, where many of the stations were located, the Stanfield (Oreg.) base was measured before the horizontal angle observations were begun. While the base was being measured, two men were sent out with one of the motor trucks to mark and prepare the stations to the westward. The necessary training of the light keepers and the overhauling of outfit was also done during this period.

Beginning the middle of June at the Stanfield base, the observing was first completed to the westward to a junction with stations of the California-Washington arc in the vicinity of Portland, Oreg. Because of unusually heavy winter snows and a late spring, even in mid-July, the stations in the Cascade Range were reached only after packing over snow several feet deep on the upper slopes of the mountains. This condition not only delayed the party in moving but also was the cause of the peaks being cloud-capped to a degree not usually found at that period of the year.

A rather unusual combination of methods of transportation occurred in the one-day move from station Chinidere to station Larch, both in the Cascade Range, which also illustrates the economy of truck transportation for a triangulation party even in mountain regions. Following a period of rain and fog, observations were finished at Chinidere one morning about daylight. The instrumental outfit was then back packed 1¹/₂ miles down to the upper camp, the point nearest to the station to which pack animals could be taken on account of the deep snow. From there pack animals were used to pack the outfit to the trucks at the base camp 9 miles below, which was reached about noon. Transferring the outfit to the trucks, the run of 48 miles to the foot of Larch Mountain was made in time to catch the last train up the mountain on the little logging railroad. This 8-mile lift took the party to within 1½ miles of the top. The instruments were back packed to the station by dark and the horizontal angle observations finished by 3 a.m. After a trip down to the cook shack of the logging camp for breakfast and a couple of hours' sleep the party returned to the station and finished the vertical-angle observations by 11 a.m. and was 30 miles on the road to the next station by dark.

Such moves were made possible by having the instrumental outfit which was needed at each station so conveniently and compactly arranged that it could be quickly transferred from the trucks to pack animals or to the backs of the members of the party. Extreme care was also taken to make the outfit as light as possible. The theodolite head, when fitted into its carrying crate of wood and canvas fitted with shoulder straps, weighed only 70 pounds and was carried by one man. The theodolite telescope and the vertical circle, the latter being a separate instrument, were fitted into a special carrying crate and were packed by one man, who also carried canteens and record books. Both of these carrying crates fitted into strong boxes which were left in the trucks and could be thus transported without any change in packing and without danger of being broken. The observing tent was of the hexagonal type, the poles and spider constructed of light steel tubing, and the walls of balloon silk. The tent and poles, together with a knapsack containing small instruments, lunch, etc., made a pack for a third man.

The occupation of station Larch completed the connection between the Stanfield base and the California-Washington arc of precise triangulation, after which the light keepers were sent to their new stations east of the Stanfield base in preparation for the observing on the remaining portion of the arc between the base and the junction with the work of the previous season at the Idaho-Oregon line. The observing party stopped long enough on the way to make the reconnoissance and observations for a connection with the triangulation of the Corps of Engineers, U. S. Army, at Celilo, Oreg., along the Columbia River. A similar connection had been made at the beginning of the season with triangulation of the Corps of Engineers along the Columbia River at Umatilla, Oreg.

the Columbia River at Umatilla, Oreg. Of the remaining 14 stations 5 were reached by long packs and 2 were located by the observing party after it was found that one of the reconnoissance lines was obstructed, so that six weeks were required to complete the observing. A total for the two seasons of 7.4 months were spent on the observing, exclusive of the time spent in measuring the base. Measured through the axis of the scheme the arc is about 640 miles in length, so that an average of about 85 miles of progress per month was made. Forty-nine stations of the main scheme were occupied, and 20 stations of supplemental schemes. It has been the custom to estimate two supplemental stations as equal to one primary station in cost and time consumed. On that basis the party averaged 8 stations per month on the arc.

ACCURACY SECURED.

Seven stations were reoccupied because of poor triangle closures, two in 1915 and five in 1916. Two or three of these reoccupations gave interesting evidence of the causes of horizontal refraction and the magnitude of their effects. In 1915 the triangles on each side of the line Camas-Silver failed by about 6", and since the direction to Silver at Camas had been observed on a helio in order to save a delay in finishing the station, those observations were at once suspected. Upon reoccupying the station and reobserving at night the line in doubt the direction was changed by almost 5".

Of the five stations reoccupied in 1916 three of them were reoccupied twice before there was a change in the atmospheric conditions which would cause a change of more than a second in the observed direction. At station Stacker there was a 6" triangle closure, but the first reoccupation gave a value almost identical with the original observation, and it was not until a second reoccupation that the closures were bettered. The line passed near no obstruction but lay over a deep valley, diverging about 30° to the northward from a high ridge leading west for several miles from the station, at about the same elevation as the point occupied. The only variation in the observing conditions which was noticeable was that during the first and second occupations there was a gentle breeze blowing off the ridge toward the line of sight, and that the weather was warm. On the last night the weather was cool, and a brisk wind blew from the line of sight toward the ridge. Previous observers have pointed out the refraction which takes place when a line is observed close to a slope with the wind blowing down the slope, if there is a marked difference of temperature between the air and the ground, but a line so far away from a slope as the one from Stacker would not ordinarily be suspected.

STATEMENT OF COSTS.

The principal elements of the costs of the observing on this arc can be readily seen from the tabulation below.

Total expenses (including depreciation of trucks and salary of observer, plus annual leave earned, but excluding cost of base)	\$ 18 166.71
Linear miles of progress through scheme	640
Cost per mile of progress	\$28.39
Number of square miles covered	30 190
Cost per square mile	\$ 0.60
Number of stations of main scheme	49
Number of stations of supplemental schemes	20
Cost per station (two supplemental equal one primary)	\$307.91
Points whose geographical position were determined	163
Cost per point determined	\$111.45

BASE MEASUREMENT.

DESCRIPTION OF BASE.

The only base measured with precise accuracy on the Utah-Washington arc was one about 10 miles long just west of Stanfield, Oreg. This was measured by the party of the writer prior to beginning the observations for triangulation in 1916. The base traversed a rolling country with small and even grades except near the east end of the base, where the grade was as much as 12 per cent, and near the middle of the base, where the line crossed a creek bottom and the grades reached 8 per cent.

The soil was almost uniformly a firm sand, which permitted the 4 by 4 inch stakes to be driven to a depth of 1½ to 2 feet. This made the stakes unusually firm and no trouble or error was introduced by unstable tape supports.

METHODS USED.

The measurement was made with 50-meter invar tapes, using the same methods which have been employed for several years in the U. S. Coast and Geodetic Survey. These methods are indicated in brief by the following extracts from the instructions given in Special Publication No. 19.

Very little increase in the average accuracy of the lengths of the triangle sides in the triangulation connected with a base will result from increasing the accuracy of the base measurement beyond that represented by a probable error of 1 part in 500 000 in the length of the base. The following limits of accuracy are selected with a view of attaining a probable error but little, if any, greater than 1 part in 500 000. You will strive to keep as far within these limits as is possible by the use of good judgment and skill, but you will restrict the time and money expended upon each operation substantially to that required to keep barely within them. Four invar tapes are to be standardized at the Bureau of Standards both before

Four invar tapes are to be standardized at the Bureau of Standards both before and after the measurement of the bases. Each base is to be measured with three of these invar tapes used in daylight or at night. A base shall be measured in sections approximately 1 kilometer in length, except that one shorter section may be used. Each section of a base shall be measured with at least two different invar tapes. Different pairs of invar tapes shall be used on different sections, so that the three tapes used on the base shall thereby be thoroughly intercompared. Two, and only two, measurements of each section shall be made, unless the discrepancy between these two measurements exceeds 20 millimeters \sqrt{K} (in which K is the length of the section in kilometers), in which case additional measurements must be made until two are obtained which agree within this limit. The fourth invar tape standardized is to be retained for use in case of serious damage to any of the three tapes with which the measurements should be taken to secure accurate horizontal and vertical align-

Such precautions should be taken to secure accurate horizontal and vertical alignment of the tapes and the determination of the tension applied to the tapes as is necessary to insure that the errors arising from these sources on a base shall each be less than 1 part in 1 000 000.

STANDARDIZATIONS OF TAPES.

The equations of the tapes supported at the 0, 25, and 50 meter points and under a tension of 15 kilograms as determined before the measurement by the Bureau of Standards on July 28 and September 17, 1915, are:

$$\begin{split} & T_{516} = 50m + (9.\ 647mm \pm 0.\ 011mm) + \\ & (0.\ 0178mm \pm 0.\ 0007mm) \times (t-30°3C). \\ & T_{517} = 50m + (9.\ 909mm \pm 0.\ 014mm) + \\ & (0.\ 0160mm \pm 0.\ 0007mm) \times (t-30°3C). \\ & T_{521} = 50m + (10.\ 185mm \pm 0.\ 010mm) + \\ & (0.\ 0205mm \pm 0.\ 0008mm) \times (t-30°3C). \\ & T_{522} = 50m + (10.\ 625mm \pm 0.\ 015mm) + \\ & (0.\ 0591mm \pm 0.\ 0011mm) \times (t-24°8C). \end{split}$$

The equations of the same tapes under similar conditions of tension and support as given by the Bureau of Standards from the standardization of November 23, 1916, when reduced to the temperatures of the July, 1915, standardization, are:

 $\begin{array}{l} T_{516}=50m+~9.~382mm~at~30°3C.\\ T_{517}=50m+~9.~779mm~at~30°3C.\\ T_{521}=50m+10.~039mm~at~30°3C.\\ T_{522}=50m+10.~640mm~at~24°8C. \end{array}$

Tape No. 522 was carried to the field but was not used. The adopted equations of the tapes used in the final computations of the Stanfield base are:

 $\begin{array}{l} T_{516} = 50m + \ 9.\ 515mm \ \text{at} \ 30^\circ 3\text{C}. \\ T_{517} = 50m + \ 9.\ 844mm \ \text{at} \ 30^\circ 3\text{C}. \\ T_{521} = 50m + 10.\ 112mm \ \text{at} \ 30^\circ 3\text{C}. \end{array}$

The adopted values are the means of the two standardizations and are based upon the assumption that the change was not a function of the elapsed time between the two standardizations but was produced at a uniform rate by the use of the tapes while measuring the base, or was due to errors in the standardizations of the tape.

REDUCTION TO SEA LEVEL.

The mean elevation of the Stanfield base is 184.4 meters. The formula used in reducing the measured length of the base to its length at sea level is:

 $C = -S\frac{h}{r} + S\frac{h^2}{r^2} - S\frac{h^3}{r^3}$ etc.,

in which C is the reduction to sea level for a section of length S and mean elevation h, and r is the radius of the earth's curvature for the section in question. The reduction to sea level for each section is given in the table of results in the column headed "Correction, sea level."

base line.
(Oreg.)
Stanfield
computation of

5390		Dir.	Tane	Uncorrected length.		E			Corrections.			Reduced	Means by	Adopted	ب ب	ĺ
5°-21-	U8te.	meas.	.o N	Tape lengths.	Meters.		Temp.	Tapeand catenary.	Set-up. Set-back.	Inclina- tion.	Sea level.	length.	tapes.	length.	E	
W rest base-20	Mary 33 Mary 3	₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽				\$	Material Construction Construct	Arefers. Arefers. 1968	Maters. - 0.0513 - 0.0513 - 0.0513 - 0.0513 - 0.0513 - 0.0513 - 0.0513 - 0.0513 - 0.0513 - 0.048 - 1.1222 - 0.0680 - 1.1222 - 1.1222 - 0.0680 - 0.0680 - 0.0615 - 0.0680 - 0.0680 - 0.0680 - 0.0680 - 0.0680 - 0.0680 - 0.0680 - 0.0766 - 0.0766 - 0.0766 - 0.0766 - 0.0766 - 0.0680 - 0.0766 - 0.0666 - 0.0766 - 0.0766 - 0.0766 - 0.0666 - 0.0766 - 0.0766 - 0.0666 - 0.0766 - 0.0666 - 0.0766 - 0.0666 - 0.0766 - 0.0766 - 0.0666 - 0.0766 - 0.0666 - 0.0766 - 0.0666 - 0.0766 - 0.0666 - 0.0766 - 0.0666 - 0.0766 - 0.0666 - 0.0666	Material Mat	Material -0.0282 -0.0282 -0.0285 -0	Meters. 1000, 0758 1000, 0758 1000, 1374 1000, 1374 1000, 1374 1000, 1374 1000, 1374 1000, 1375 1000, 1375 1000, 1375 1000, 1375 1000, 1375 1000, 1378 998, 9957 998, 9957 998, 9557 998, 9557 998, 9557 998, 9773 998, 9773 1000, 1173 1000, 1173 998, 9773 998, 9773 1000, 11734 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 100	Meters. 1000, 1365 1000, 0373 1000, 0373 1000, 0373 1000, 0373 1000, 0373 1000, 0373 1000, 0373 1000, 0373	Meters. 1000.0748 1000.1371 1000.1371 1000.1218 1000.1218 1000.1218 1000.0402 1000.0402 1000.0402 1000.0402 1000.0402 1000.1775 999.7777 999.7777 1000.1775	143 143 143 143 143 143 143 143	2222332222222225522222552222255222225522222552222
300-320	June 3 June 2 June 2	a B m B m B	516 521 521 521	88==	999 999 999 999 999 999 999 999 999 99	828		+ . 1903 + . 1112 + . 1047	+30.5009		0192	579. 3556 579. 3556 579. 3592		1000. 1762 579. 3624	1 + 1 + 4 4 % % 2 4 0 0	19.38 10.24 10.23

UTAH-WASHINGTON PRECISE TRIANGULATION.

49

The length of the Stanfield base is 16 596.6680 meters. The probable error of the measured length, not including the probable error of the standardizations of the tapes is ± 7.6 mm., which corresponds to 1 part in 2 183 772.

STATEMENT OF COST.

The actual time spent in measuring the base with the tapes was only 13.1 hours. The length of the base, doubled, was 33.2 kilometers, giving 2.52 kilometers of completed base per hour. The time given above includes that spent in remeasuring 4 kilometers, so that the actual average rate was 2.82 kilometers per hour.

The total cost of the base was about \$780, which includes labor, expressage, salary of chief of party, lumber, running expenses, and depreciation of truck, etc., but no charges for standardization. This is an approximate cost of \$47 per kilometer, or about \$76 per mile. If \$200 were added as the cost of one standardization of the four tapes the total cost to the Government would be \$980. This gives a cost of about \$60 per kilometer, or \$97 per mile.

ASTRONOMIC WORK.

The astronomic latitudes and longitudes of four stations of this arc were determined by J. E. McGrath and W. B. Fairfield, hydrographic and geodetic engineers, during the summer of 1916. The principal purpose of this work was to obtain the astronomic longitudes at the Laplace stations for the purpose of controlling the azimuths in the triangulation as explained in the paragraph following. The astronomic latitude was observed at each longitude station for the purpose of determining the deflection of the vertical in the meridian. The observations for latitude were made at a station while the other longitude observer was moving to his next station and setting up his instruments, so that no delay was caused thereby.

LAPLACE POINTS.

A Laplace station is a station of the triangulation at which the astronomic azimuth and the astronomic longitude have been determined.

A Laplace azimuth is an observed astronomic azimuth corrected for the prime vertical component of the deflection of the vertical. This deflection is the angle formed by the actual plumb-line direction with the normal to the reference spheroid at the point of observation.

It is possible to carry the geodetic longitudes throughout a continuous system of triangulation with very little error, but the geodetic azimuth is affected by the accidental errors of the observations of horizontal directions and also by the systematic error which seems almost always to be present in an arc of triangulation.² The effect on the azimuth is, in general, of such a magnitude that it is very desirable that true or Laplace azimuths be introduced into the scheme and held in the adjustment of the triangulation. This was done in the triangulation covered by this report. The Laplace azimuths are at Echo and La Grande, Oreg., and Mountain Home, Idaho.

ASTRONOMIC LATITUDES.

The observations for latitude were made with the Bamberg broken telescope type transit during the occupation of the stations for longi-

50

² See pp. 64-79 of U. S. Coast and Geodetic Survey Special Publication No. 19.

tude. The Bamberg transit may be used for the determination of latitude by the Horrebow-Talcott method in much the same manner as with the zenith telescope except in some minor details. The general methods followed in this work were those given in U. S. Coast and Geodetic Survey Special Publication No. 14.

At each station from 15 to 19 pairs of stars were observed on from one to three nights, with a resulting accuracy represented by a probable error for the station of from ± 0.000 to ± 0.0000 to

In every case, with the exception of station Blackfoot, the astronomic station was referred to the triangulation station, the descriptions of which may be found by consulting the index.

The following table gives the names of the latitude stations, their geodetic latitudes and longitudes, their astronomic latitudes reduced to sea level, and the values A-G, the astronomic minus the geodetic latitude, which is the deflection of the vertical in the meridian. The astronomic latitudes have not been reduced for the variation of latitude.

Station.	Geodetic latitude.	Geodetic longitude.	Astro- nomic latitude.	A-G.
Echo, Oreg La Grande, Oreg Mountain Home, Idaho Blackfoot longitude station, Idaho	• / // 45 44 38.385 45 19 49.467 43 07 44.382 43 10 59.710	° , '' 119 11 20, 222 118 05 39, 346 115 41 36, 050 112 21 01, 412	" 38, 89 52, 99 '41, 91 58, 49	" +0.50 +3.52 -2.47 -1.22

ASTRONOMIC LONGITUDES.

The five observed differences of longitude connected the four new stations in this longitude chain with the old longitude stations at Walla Walla, Wash., and Salt Lake City, Utah, both the latter being points in the adjusted longitude net of the United States. (See Appendix No. 2. Report for 1897.)

The observations were made with Bamberg broken telescope transits, Nos. 20 and 21, equipped with self-registering micrometers. The methods used were those described in U. S. Coast and Geodetic Survey Special Publication No. 14, modified to conform to the requirements of the broken telescope type of transit.

The descriptions of the new stations and the data connected with each of the five differences of longitude follow.

Date of exchange of	Obse	orver.	Difference	
time signals.	Western station, Echo.	Eastern station, Walla Walla.	of longi- tude.	ν.
1916. August 2 August 3	}W.B.Fairfield	J. E. McGrath	$\begin{array}{cccc} m. & s. \\ 3 & 23. 204 \\ & 23. 218 \end{array}$	8. +0.007 007
Mean			$3 23.211 \pm .005$	•

Difference of longitude between Echo, Oreg., and Walla Walla, Wash.

At Echo a new station was established. Bamberg transit No. 21 was mounted on a temporary wooden pier 2.973 meters due north of Echo triangulation station. (See description on p. 28.) At Walla Walla, Bamberg transit No. 20 was mounted on a temporary pier 188.064 meters (0.583) east of the station of 1887-1888.

	h.	m.	8.
Echo transit (1916) to Walla Walla transit (1887-1888)	0	3	22.628
Correction for loop closure			-0.006
Adjusted difference	0	3	22.62 2
Adjusted difference Longitude Walla Walla transit (1887-1888), 1897 adjustment ³	7	53	23. 33 1
Longitude Echo transit (1916), adjusted	(7	56	45. 95 3
	(119°	11′	29? 29 5
Reduction to Echo triangulation station		••	. 000
Longitude, Echo triangulation station	119	11	29.295

Date of exchange of	Obse	rver.	Difference	
time signals.	Western station, Echo.	Eastern station, La Grande.	of longi- tude.	۷.
1916. August 19 August 20 August 21 Mean	W. B. Fairfield	J. E. McGrath	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8. -0.023 002 +.024

Difference of longitude between Echo and La Grande, Oreg.

At Echo, Bamberg transit No. 21 was mounted on the temporary pier of the 1916 station. (See p. 51.) At La Grande a new station was established. Bamberg transit

At La Grande a new station was established. Bamberg transit No. 20 was mounted on a temporary wooden pier 76.396 meters (2".47) north and 40.290 meters (1".850) west of La Grande triangulation station. (See description on p. 27.)

		т.	8 .
Echo transit (1916) to La Grande transit (1916)	0	4	23. 459
Correction for loop closure		••	+0.006
Adjusted difference	0	4	23.465
Longitude Echo transit (1916), adjusted			45. 953
Longitude La Grande transit (1916), adjusted	7	52	22.488
			37.4320
Reduction to La Grande triangulation station		••	-1.850
Longitude, La Grange triangulation station	118	05	35.470

Difference of longitude between La Grande, Oreg., and Mountain Home, Idaho.

Determinant	Obse	rver.	Difference	
Date of exchange of time signals.	Western station, La Grande.	Eastern station, Mountain Home.	of longi- tude.	۷.
1916. September 1 September 5 September 6	J. E. McGrath	W. B. Fairfield	$ \begin{array}{cccc} m. & s. \\ 9 & 35. 781 \\ 35. 810 \\ 35. 789 \end{array} $	8. -0.012 + .017 004
Mean		••••••	9 35.793 ±.006	

At La Grande, Bamberg transit No. 20 was mounted on the temporary pier of the 1916 station. (See above.)

* See App. No. 2, Report for 1897, p. 254.

At Mountain Home a new station was established. Bamberg transit No. 21 was mounted on a temporary wooden pier 7.495 meters (0."332) due west from Mountain Home triangulation station. (See description on p. 26.)

	n.	т.	8.
La Grande transit (1916) to Mountain Home transit (1916)	0	9	35. 793
Correction for loop closure		••	+0.006
Adjusted difference	0	9	35. 799
Longitude La Grande transit (1916), adjusted	7	52	22. 488
Longitude Mountain Home transit (1916), adjusted	7	42	46. 689
Longroude mountain mome manbre (1910), adjusted	115°	41'	40? 335
Reduction to Mountain Home triangulation station		••	-0. 332
Longitude, Mountain Home triangulation station	115	41	40.003

Difference of longitude between Mountain Home and Blackfoot, Idaho.

Date of exchange of	Obse	Prver.	Difference	
time signals.	Western station, Mountain Home.	Eastern station, Blackfoot.	of longi- tude.	۷.
1916. September 20 September 21 September 24	W. B. Fairfield	J. E. McGrath	m. s. {13 21,933 21,916 21,927	<i>s</i> . +0.008 009 + .002
Mean			13 21.925 ± .003	

At Mountain Home, Bamberg transit No. 21 was mounted on the temporary pier of the 1916 station. (See above.)

At Blackfoot a new station was established. Bamberg transit No. 20 was mounted on a temporary wooden pier which is connected by traverse with B. M. Q_e , a triangulation station of secondary accuracy.

	h.	m.	8.
Mountain Home transit (1916) to Blackfoot transit (1916)	0	13	21. 925
Correction for loop closure			+0.006
Adjusted difference	0	13	21. 931
Longitude Mountain Home transit (1916), adjusted	7	42	46. 689
Longitude Blackfoot transit (1916), adjusted	7	29	24.758
	112°	21′	11 .4370

Difference of longitude between Blackfoot, Idaho, and Salt Lake City, Utah.

Deter	Obse	Difference		
Date of exchange of time signals.	Western station, Blackfoot.	Eastern station, Salt Lake City.	of longi- tude.	۷.
1916. October 16. October 18. October 19. October 20.	J. E. McGrath	W. B. Fairfield	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3. +0.044 + .026 015 056
Mean	· · · · · · · · · · · · · · · · · · ·		1 49.579 ±.015	

At Blackfoot, Bamberg transit No. 20 was mounted on the temporary pier of the 1916 station. (See above.) At Salt Lake City, Bamberg transit No. 21 was mounted on the sandstone pier of the 1869 station. (See App. No. 2, Report for 1897).

	n.	m.	8.
Blackfoot transit (1916) to Salt Lake City transit (1869-1916)	. 0	01	49 . 579
Correction for loop closure		••	+0.006
Adjusted difference	. 0	01	49.585
Longitude Blackfoot transit (1916), adjusted	. 7	29	24, 753
Longitude Salt Lake City transit (1897), adjustment ⁸	. 7	27	35.173

The following table gives for each longitude station the name of the station, the geodetic latitude and longitude, the astronomic longitude, the difference between the astronomic and geodetic longitude, A-G, the cosine of the geodetic latitude, ϕ' , and finally the deflection in the prime vertical.

The astronomic longitudes have not been corrected for variation of latitude. They have in each case, with the exception of station Blackfoot, been reduced to the triangulation station.

Station.	Geodetic lati- tude.		Geodetic longi- tude.		Astro- nomic longi- tude.	A -G.	Cos φ'.	A-G (P. V.)		
Echo, Oreg La Grande, Oreg Mountain Home, Idaho Blackfoot longitude station, Idaho	• 45 45 43 43	, 44 19 07 10			, 11 05 41 21	" 20. 222 39. 346 36. 050 01. 412	" 29. 29 35. 47 40. 00 11. 37	" +9.07 -3.88 +3.95 +9.96	0. 6979 . 7030 . 7298 . 7292	" +6.33 -2.73 +2.88 +7.26

Deflections in the prime vertical.

ASTRONOMIC AZIMUTHS.

An astronomic azimuth was measured at each of 13 triangulation stations of this arc, the observations being made by the triangulation party at such times as did not interfere with the progress of the horizontal angle measurements. The chronometer correction was obtained by observation on stars near the prime vertical with a 6-inch vertical circle, and the angle measures were made by the direction method with the 12-inch theodolite used for the regular angle measures. Detailed descriptions of these methods may be found in U. S. Coast and Geodetic Survey Special Publication No. 14.

Three of these stations—Echo, La Grande, and Mountain Home were Laplace stations (see p. 50), at which the astronomic azimuth was determined on two different nights, with a prescribed probable error for the station of not to exceed ± 0.3 . At the other stations azimuth observations were made on a single night, the instructions permitting a probable error of ± 0.5 . The azimuths at the Laplace stations only were used in the adjustment of the triangulation, the other azimuths being observed for use in investigations concerning the deflections of the vertical, the figure of the earth, and the relative densities of different portions of the earth's crust.

^{*} See App. No. 2, Report for 1897, p. 254.

Program of occupation of azimuth stations by party of C. V. Hodgson, hydrographic and geodetic engineer.

Station.	Date of occupation.	Number of positions. ¹	·Probable error.
Ortand Idaha	1915 . June 26	11	" ±0.43
Oxford, Idaho Cache, Idaho	July 16, 19.	8	± 10 ± 50
Caribou, Idaho	July 24	11	±.27
Big Butte Ideho	Amonet 10	11	±.53
Filat, Idaho. Silver, Idaho.	September 29	12	±.26
Silver, Idaho Nyssa, Idaho	Votober 20	12 12	$\pm .40 \\ \pm .38$
Nyssa, 10au0		12	±.00
	1916		
Echo, Oreg	June 15, 18	26	±.32
Ella, Oreg	. June 22	11	±.39
John, Oreg	. July 5	13	±.40
La Grande, Oreg Beaver, Oreg	. August 19, 20	27	± .17
Beaver, Oreg Mountain Home, Idaho	October 6 15	26	$\pm .23 \\ \pm .33$

¹ Each new setting of the graduated circle with relation to the direction to the initial station or line is called a position. In any one position two pointings with the telescope are made on each object, one with the telescope direct and the other reversed.

The table below gives for each azimuth station its geographic position, the geodetic azimuth of a line of the main scheme of the triangulation, the astronomic azimuth of the same, the difference between the astronomic and geodetic azimuths, A-G, the negative cotangent of the geodetic latitude of the occupied station $(-\cot \phi')$, and finally the value of A-G (P. V.), the deflection in the prime vertical.

In each case the azimuth and triangulation stations are coincident. The mark used was the signal lamp accurately centered over the triangulation station at the distant end of the line of triangulation for which the azimuth is given.

Station.	Geodetic latitude.	Geodetic longitude.	Geodetic azimuth.	To station—	Astro- nomic azi- muth.	A-G.	Cot \$'.	A-G (P. V.)
	• • • • •	• , ,,	• , ,,		,,	,,		
Oxford, Idaho. Cache, Idaho. Caribou, Idaho Big Butte.	42 16 11.766 42 11 09.402 43 05 37.440	112 05 49.972 113 39 37.544 111 18 39.407	177 53 29.64 201 01 01.81 73 36 19.32	Putnam Big Butre Putnam	25. 41 01. 68 14. 75	-4.23 13 -4.57	-1.1001 -1.1034 -1.0689	+4.65 + .14 +4.88
Idaho Flat, Idaho Silver, Idaho Nyssa, Idaho	43 23 47.288 42 43 48.702 42 58 51.394 43 52 25.950	113 01 18.580 114 24 52.624 116 39 24.485 116 58 47.747	82 25 25.71 199 03 28.85 286 55 56.66 54 31 31.86	Picabo Picabo Blue Mitchell	25.48 25.09 62.94 27.10	23 -3.76 +6.28 -4.76	-1.0576 -1.0826 -1.0731 -1.0401	+ .24 +4.07 -6.74 +4.95
Echo, Oreg. (Laplace)	45 44 38.385	119 11 20.222	110 20 19.99	Stanfield	13.34	-6.65	0.9744	+6.48
Ella, Oreg Mountain Home, Idaho	45 34 17.518	119 46 41. 429	257 10 11.07	east base. Job	09.89	-1.18	-0.9802	+1.16
(Laplace) John, Oreg Beaver, Oreg La Grande,	43 07 44.382 45 24 06.690 44 35 59.517	115 41 36.050 120 36 08.470 117 47 00.282	332 31 17.89 85 08 35.43 183 05 10.22	Blue Lookout Fanny	15.31 36.36 01.07	-2.58 + .93 -9.15	1.0676 0.9861 1.0141	+2.75 92 +9.28
Oreg. (Le- place)	45 19 49.467	118 05 39.346	180 05 15.10	Emily	17.78	+2.68	-0.9885	-2.65

Deflections in prime vertical.

The astronomic azimuth is corrected for diurnal aberration, eccentricities, elevation of mark, but not for variation of latitude. The Laplace azimuths computed at these stations are undoubtedly more accurate than the geodetic azimuths computed through the triangulation, and therefore the former were considered free from error.. The discrepancy between the Laplace and the geodetic azimuth was considered as a deviation of the triangulation in azimuth. The differences between the deflections in the prime vertical as derived from longitude observations and from azimuth observations are due to the method of adjustment.

COST OF ASTRONOMIC WORK.

Since the azimuth observations were made at such times as would not interfere with the progress of the triangulation party, their cost is included with that of the triangulation.

The two parties engaged on latitude and longitude work determined eight differences of longitude during their season, of which five were along the arc of triangulation covered by this publication. The total cost of the two parties for the entire season was about \$5250. Fiveeighths of that cost may properly be charged to this arc, or about \$3255, giving an average cost for each of the five differences of longitude of \$651. This is under the supposition that the latitude observations did not increase the cost of the work, since they were made on nights when longitude observations were not possible.

TRUCK TRANSPORTATION.

PROBLEMS INVOLVED.

At first sight it may seem strange that this should be the first arc on which automobile trucks were used to transport the reconnoissance and observing parties. There is a single distinguishing feature about the travel attendant upon such work, however, which will make plain the difficulty in the use of trucks, and that is that the triangulation parties travel from mountain to mountain instead of from town to town. This simple statement, with the further explanation that the desired point on a mountain is almost invariably the highest point, will mean much to one familiar with western mountain roads.

Previously the triangulation parties of the U. S. Coast and Geodetic Survey had used wagons and teams to transport their outfits, with the advantage that after the wagons had been taken as close to the peak as possible pack saddles could be put on the animals and the instruments and outfit packed to the station. When trucks are used, pack animals must be hired, or else the trucks must be taken fairly close to the station and the instruments then back packed to the station. Year by year pack animals are becoming increasingly hard to obtain, and a back pack of more than 2 miles is neither easy nor economical. Since camp must be kept at the trucks and the climb from the camp to the station made for each observing period, which is usually at night, the problem of proper transportation of a triangulation party is by no means solved. Under average conditions, however, the use of trucks will accomplish a great saving of time.

The trucks used were of three-quarter-ton size and standard make, equipped with pneumatic tires and platform body, but without top, cab, wind shield, electric lights, or starter. The first season they were operated they had a five to one gear ratio, but at the beginning of the second season a special rear axle and special differential gears were put in which changed the gear ratio to seven to one. This re-

UTAH-WASHINGTON PRECISE TRIANGULATION.

sulted in reducing the speed from about 30 miles per hour as a maximum to 18, but it gave greatly increased pulling power, which was needed on the soft roads and mountain grades. It reduced the average number of miles per hour from 12.1 in 1915 to 10.9 in 1916, but the miles per gallon of gasoline used were not changed by one-tenth mile, being about 10.5 for each season.

UNIT COSTS.

The tabulation below gives in condensed form the cost data for the trucks for the period 1915-16.

	Truck	Truck
- · · · ·	No. 3.	No. 4.
Total miles traveled	8457	7800
Miles per hour	10.9	10.9
Miles per gallon of gasoline	10.6	10.3
Miles per gallon of oil and grease		145
Cost per mile for gasoline	2. 10¢	2. 15¢
Cost per mile for oil and grease	0.56	0.60
Cost per mile for repairs and extra parts, including pay of hands while		
overhauling	1. 29	1.88
Cost per mile for tires, partly estimated	5.70	5.70
Cost per mile for tires, partly estimated Cost per mile, depreciation, estimating the life of truck to be 18 000		
miles	12.97	12. 97
Total cost per mile	22.62	23. 30
Cost per ton-mile load of 1800 lbs	25. 24	25. 78

ANALYSIS OF COSTS, FIELD AND OFFICE.

For the purpose of showing unit costs in a condensed form, and also of comparing the relative cost of the various operations connected with the determination of geodetic control points, there follows a tabulation of these factors:

		•		
Kind of operation.	Total cost.	Cost per point de- termined (163).	Cost per mile of progress (640).	Cost per square mile (30 190).
Reconnoissance and signal building Triangulation and azimuth observations. Base measurement Astronomical observations. Total, field.	18 166. 71 780. 00 3255. 00	Dollars. 11. 47 111. 45 4. 79 19. 97 147. 68	Dollars. 2. 92 28, 39 1. 22 5. 09 37. 62	Dollars. 0.06 0.60 0.03 0.11 0.80
Office computation Compiling and publishing (estimated) Total, office	1064.00 1500.00 2564.00	6. 53 9. 20 15. 73	1.66 2.34 4.00	0.04 0.05 0.09
Field and office	26 635. 71	163. 41	41.62	0. 89

Different arcs of triangulation show a great divergence in the cost per point and the cost per square mile, both of which are largely dependent upon the length of lines in the scheme. The cost per mile of progress through the middle of the scheme, however, is relatively constant and furnishes a good basis of comparison or of estimation of costs. The ninety-eighth meridian arc (after 1901) cost \$63, the Texas-California arc \$32, and the one hundred and fourth meridian arc \$40 per mile.

STATEMENT OF ADJUSTMENTS AND DISCREPANCIES.

The precise triangulation considered in this publication starts from the line Pilot Peak-Ogden Peak, Utah, and ends on the line Red-Larch, in Washington and Oregon. Pilot Peak-Ogden Peak is a line of the thirty-ninth parallel arc of precise triangulation, and is fixed in length, azimuth, and position by the adjustments contained in U. S. Coast and Geodetic Survey Special Publication No. 19. Red-Larch is a line of the California-Washington arc of precise triangulation and is fixed in length, azimuth, and position by the adjustment contained in U. S. Coast and Geodetic Survey Special Publication No. 13.

No local adjustments were made, these having become unnecessary since the adoption of the present method of supplying missing observations in broken series.

A single least square adjustment served for the entire precise scheme. The measured base, Stanfield, caused the use of two length equations and the Laplace azimuths computed at Echo, La Grande, and Mountain Home made four azimuth equations necessary.

This arc closes a loop of precise triangulation which extends from the line Pilot Peak-Ogden Peak, Utah, westward along the thirtyninth parallel to the line Mount Lola-Round Top, Calif., northward through Oregon to the line Red-Larch, which is partly in Washington and partly in Oregon, then southeastward through Oregon and Idaho to the line Pilot Peak-Ogden Peak, Utah. The total length of the arc considered in this publication is about 640 miles.

When the preliminary position computation was completed, it was found that the discrepancy in position was about $67\frac{1}{2}$ feet, or 1 part in 50 000 of the distance run. If the whole loop, instead of this arc only, is considered, the discrepancy in position is only 1 part in 141 000 of the distance run.

As all of the loop except the present arc had been adjusted previously, the old work was held fixed and all the latitude and longitude discrepancies were put into this arc. The adjustment required the use of 69 angle, 25 side, 2 length, 4 azimuth, 1 latitude, and 1 longitude equations. The total number of normal equations solved was 102.

The least square adjustment of the main scheme of triangulation was made by O. S. Adams, geodetic computer. Sarah Beall, geodetic computer, made the astronomic computations and adjustments.

The length discrepancy developed between the Stanfield base and the line Red-Larch, which was fixed in the adjustment of the California-Washington arc of precise triangulation, was 76 in the seventh place of logarithms or 1 part in 57 300 before the angle and side equations were satisfied. The measured length of the Stanfield base is shorter than the length computed through the triangulation from the line Red-Larch.

The length discrepancy developed between the Stanfield base and the line Pilot Peak-Ogden Peak, which was fixed in the adjustment of the thirty-ninth parallel arc of precise triangulation, was 239 in the seventh place of logarithms or 1 part in 18 200 before the angle and side equations were satisfied. After the adjustment of the angle and side equations the discrepancy in length was less than 1 part in 25 000. The measured length of the Stanfield base is shorter than the length computed through from the line Pilot Peak-Ogden Peak as it was from the other adjusted line.

The probable error of the base longitude station at Walla Walla, as determined by the adjustment of the longitude net of the United States, is ± 0.052 . This error, combined with the probable error of the observed value of each longitude station in this loop, gives a probable error for the longitude of each station of about ± 0.054 , or ± 0.081 . The probable error of the observed astronomic azimuths at Mountain Home, La Grande, and Echo are ± 0.033 , ± 0.017 , and ± 0.032 , respectively. Combining these probable errors with the probable error for the longitude determinations at these stations gives a probable error for the Laplace azimuths at the three stations named above of ± 0.082 , ± 0.077 , and ± 0.081 , respectively.

The unadjusted azimuth, as computed through the triangulation from the line Pilot Peak-Ogden Peak to the Laplace station at Mountain Home, showed a discrepancy as compared with the Laplace azimuth at that station of +2.05. Similarly, from Mountain Home Laplace to La Grande Laplace the discrepancy was -2.75, from La Grande Laplace to Echo Laplace the discrepancy was +5.80, and from Echo Laplace to the line Red-Larch it was -1.22. A plus sign indicates that the azimuth as computed through the triangulation, starting from the previous Laplace azimuth, is larger than the Laplace azimuth at the forward Laplace station. A minus sign signifies the reverse.

The probable error of the geodetic azimuth of a line of the triangulation between the line Pilot Peak-Ogden Peak and the Laplace azimuth at Mountain Home is ± 0.981 , computed by the formula

$$r_{\rm o} = {{\rm probable \ error \ of \ a \ direction \ } \times \sqrt{2n} \over \sqrt{m}},$$

where n is the number of stations through which the azimuth is computed and m the number of ways (ordinarily four) by which the azimuth may be carried through a figure. Similarly, the probable error of the geodetic azimuth due to the triangulation observations alone, computed from Mountain Home to La Grande is ± 0.92 , from La Grande to Echo is ± 0.85 , and from Echo to the line Red-Larch is ± 0.92 .

An additional indication of the amount of the azimuth accumulation may be obtained by comparing the probable error of the Laplace azimuth at a station with the probable error of the azimuth at that station as computed through the triangulation from the previous fixed azimuth. This latter probable error, obtained by combining the probable error of the geodetic azimuth due to the triangulation observations, with the probable error of the preceding fixed azimuth, is given below for each of the four stations which were held fixed, north of the starting line:

Mountain Home	± 1 ! 11
La Grande	± 1.23
Echo	+1.15
Red-Larch (fixed line)	± 1.23

HORIZONTAL DIRECTIONS AND ELEVATIONS OF TELESCOPE ABOVE THE STATION MARKS.

All observed directions in the triangulation along the Utah-Washington arc have been given equal or unit weight. Those directions were reduced to center where either the instrument or the object observed was not coincident with the center of the station mark.

The horizontal directions were all reduced to sea level. The correction for this reduction expressed in seconds is given by

$$\frac{e^2h\,\sin\,2\alpha\,\cos^2\phi}{2\rho\,\sin\,1^{\prime\prime}}$$

where $e^2 = \frac{(a^2 - b^2)}{a^2}$, *a* is the earth's equatorial radius and *b* is the

polar semidiameter, h is the height of station observed, ρ is the radius of curvature of the earth in a plane normal to the meridian, ϕ is the latitude, and α is the azimuth reckoned from the south to the westward.

In the following table are given the lists of observed and adjusted directions and also the elevations of the telescope of the theodolite above the station mark at each of the stations of the precise triangulation considered in this publication. The elevations enable the reader to judge of the amount of building done and they indicate to the engineer or surveyor who may use the station in the future the probable amount of building required by him. In the table is included a column showing the number assigned to each direction in the figure adjustment of the main scheme.

Following the table of horizontal directions and elevations of telescope above the station marks there is given a list of condition equations used in the adjustment of the precise triangulation considered in this publication.

Station occupied and elevation of in- strument above station mark.	Number of direc- tion.	Object observed.	Observed direction reduced to sea level.		tion ced	Final seconds after figure adjust- ment.
Pilot Peak	$\begin{cases} \cdots & \vdots \\ & 1 \\ & 2 \\ & 3 \end{cases}$	Reference mark Cache Oxford Ogden Peak	36	19	" 00. 00 20. 57 38. 29 22. 99	" 20. 14 38. 02 23. 69
Ogden Peak	$\begin{cases} & 4 \\ & 5 \\ & 6 \end{cases}$	Reference mark Pilot Peak Cache Oxford		00 45 14 39	00.00 16.17 17.35 17.00	15.84 17.36 17.33
Oxford, 1.29 meters	$ \left\{\begin{array}{c} 11\\ 12\\ 7\\ 8\\ 9\\ 10\\ \end{array}\right. $	Putnam. Caribou. Ogden Peak. Pilot Peak. Cache. Big Butte.	173 232 268	42	59.99 48.38 36.11 45.09 56.90 09.11	00, 23 48, 13 35, 72 45, 02 57, 65 08, 82
Cache, 1.29 meters	32 33 34 35 36 29 30 31	Big Butte. Putnam Oxford. Ogden Peak. Pilot Peak. Flat. Kimama Picabo	35 64 104 174 293 320	19 51	00.09 38.88 23.46 41.00 33.25 51.32 18.82 40.00	00. 04 38. 57 22. 97 40. 36 33. 81 50. 65 19. 39 41. 02

Abstract of horizon(al directions and elevations of telescope above the station marks.

,

Station occupied and elevation of in- strument above station mark.	Number of direc- tion.	Object observed.	di r	Observed direction reduced to sea level.		Final seconds after figure adjust- ment.
Putnam, 1.40 meters	$ \begin{cases} 17 \\ \dots \\ 13 \\ 14 \\ 15 \\ 16 \end{cases} $	Caribou	° 15 36 104 164 233 249	55 26 49 43 42	" 00. 10 07. 82 50. 72 21. 84 57. 83 48. 93 31. 46	00. 11 07. 75 51. 12 21. 64 58. 14 49. 12 31. 13
Caribou, 1.31 meters	{ 19 20 18	Putnam Middle Butte Stump Henry Woodall Oxford	0 37 261 307 310 321	45 22 54 32	00. 09 16. 74 52. 32 12. 85 52. 27 57. 10	00. 11 16. 51 52. 20 13. 40 51. 45 57. 31
Stump, 1.19 meters	{::::::	Caribou Henry	0 301		00. 00 51. 10	00, 12 50, 98
Henry, 0.80 meters	{	Caribou Stump Woodall Putnam	0 75 185 248	27 14	00. 00 30. 08 47. 40 51. 12	59.65 30.20 47.62 51.12
Woodall, 1.34 meters	{	Caribou Henry Putnam	0 2 265	36	00. 00 10. 40 54. 85	00. 38 10. 40 54. 47
Middle Butte, 1.21 meters	$\begin{cases} 23 \\ 21 \\ \\ 22 \end{cases}$	Big Butte. Caribou Precise level B. M. Q ₈ Putnam	0 224 256 256	50 00	00. 10 23. 46 13. 38 51. 34	59.56 23.65 13.11 51.68
Big Butte, 1.34 meters	24 25 26 27 28	Middle Butte. Precise level B. M. Q. Putnam. Cache. Kimama. Picabo.	166	14 48 06 15	00. 09 00. 92 15. 94 18. 41 27. 89 40. 45	00. 62 01. 19 15. 78 18. 20 27. 90 40. 26
Kimama, 1.27 meters	839 40 37	Flat Picabo Big Butte Cache	0 90 159 270	00 39 57 30	00. 05 00. 77 03. 59 32. 47	00. 54 00. 63 04. 17 31. 75
Picabo, 1.27 meters	44 45 41 42 43 43	Green Camas Big Butte. Kimama. Flat.	0 5 178 258 295	14 07	00. 03 40. 80 33. 64 29. 43 53. 87	00. 39 41. 01 33. 37 29. 23 53. 77
Flat, 1.24 meters	50 51 46 47 48 49	Kimama Cache Blue Camas Green Picabo	0 63 196 234 252 308	24 26	46.60 39.83	59.78 10.02 47.01 39.39 32.99 19.31
Green, 1.36 meters	$\left\{\begin{array}{cc} 52 \\ 53 \\ 54 \\ 55 \end{array}\right.$	Picabo Flat Blue Camas	0 59 130 192	00 55 34 33	15. 77 02. 31	59.40 15.62 02.21 49.03
Camas, 1.32 meters	63 64 65 66 67 68 62	Green Flat. Blue Mountain Home. Silver Shafer. Picabo.	0 29 81 142 158 222 352	00 19 04 38 38 46 32	36. 92 35. 22 47. 24 60. 25	58. 88 37. 22 35. 42 48. 40 59. 75 29. 80 48. 41
Blue, 1.27 meters	59 60 61 56 57 58	Camas Green Flat Silver	0 36 90 291 336 338	55 03 35	59. 98 42. 89 21. 80 43. 79 48. 18 25. 15	59. 74 43. 05 21. 76 44. 28 48. 37 24. 56

Abstract of horizontal directions and elevations of telescope above the station marks— Continued.

						·
Station occupied and elevation of in- strument above station mark.	Number of direc- tion.	of direc-Object observed.		bser irec edu sea	Final seconds after figure adjust- ment.	
Mountain Home, 1.29 meters	69 70 71	Camas. Blue. Silver.	。 94 200	, 00 57 56	" 00. 12 37. 87 00. 47	" 59.14 38.28 01.04
Silver, 1.15 meters	75 76 77 72 73 74	Camas. Mountain Home. Blue. Nyssa. Squaw. Shafer.	0 4 34	00 55 01 25 39 34	00. 07 51. 66 35. 38 45. 74 06. 54 11. 40	59. 32 51. 69 35. 64 46. 40 06. 97 10. 79
Shafer, 1.25 meters	78 79 80	Camas. Blue. Silver. Mitchell. Nyssa. Squaw.	0 16 70 132 141 180	00 53 26 52 51 53	59. 87 37. 84 59. 40 32. 07 22. 47 04. 42	59. 52 37. 69 59. 57 32. 16 22. 89 04. 31
Squaw, 1.26 meters	83 84 85 86 87	Shafer. Silver Mitchell. Nyssa Dry Iron.	51	00 38 54 55 56 35	59.87 59.89 05.26 45.46 51.75 49.56	59.37 59.99 05.73 46.18 51.25 49.73
Nyssa, 1.28 meters	88 89 90 91 92	Mitchell. B. M. G. Dry. Iron. Squaw. Shafer. Silver.	0 46 66 122 194	00 31 42 34 05 07 35	00. 06 56. 55 13. 98 42. 49 09. 81 45. 25 15. 40	59. 22 58. 31 14. 91 42. 29 09. 19 45. 48 15. 09
Dry, 1.34 meters.	$\left\{\begin{array}{c} 99\\ 100\\ 101\\ 102\\ 103\end{array}\right.$	Maxwell Beaver Iron Squaw. Nyssa	0 12 73 121 144	00 13 25 49 25	59.89 07.01 07.75 17.08 23.68	00. 85 06. 62 07. 65 16. 58 23. 62
Iron, 1.38 meters	95 96 97 98 93 94	Dry Beaver Maxwell Medical Squaw Nyssa	0 45 62 96 269 306	00 14 31 40 02 52	00. 11 23. 13 47. 47 24. 46 55. 82 33. 59	00. 28 23. 50 47. 65 24. 47 55. 13 33. 55
Beaver, 1.49 meters	104 105 106 107 108	Maxwell Fanny Medical Iron Dry	134	00 40 04 29 03	59.86 16.71 32.60 22.87 05.17	00, 13 17, 08 32, 34 22, 37 05, 28
Medical, 1.60 meters	$\left\{\begin{array}{c} 109 \\ 110 \\ 111 \\ 112 \end{array}\right.$	Iron Beaver. Maxwell Fanny.	0 55 95 180	00 09 27 06	59.90 16.38 06.36 53.40	59. 19 16. 60 06. 62 53. 64
Maxwell, 1.39 meters	$\left\{\begin{array}{c} 113\\ 114\\ 115\\ 116\\ 117\\ 118\end{array}\right.$	Powder Emily. Fany Medical. Iron. Beaver.	0 35 65 97 148 176	00 59 57 56 20 33	59.86 42.21 15.51 16.91 41.48 59.75	00. 10 42. 56 15. 56 16. 68 41. 53 59. 27
Powder, 1.28 meters	$\left\{\begin{array}{c} 135\\ 131\\ 132\\ 133\\ 134\end{array}\right.$	Maxwell Birch Big Hill. Emily Fanny	181	00 59 13 35 04	59.86 56.07 41.32 37.27 08.35	59. 73 56. 62 40. 01 37. 93 08. 56

Abstract of horizontal directions and elevations of telescope above the station marks-Continued.

, 62

.

Abstract of horizontal directions and elevations of telescope above the station marks— Continued.

Station occupied and elevation of in- strument above station mark.	Number of direc- tion.	Object observed.	đ	irect	tion ced level.	Final seconds after figure adjust- ment.
Fanny, 1.33 meters	124 119 120 121 122 123	Emily. Medical. Beaver. Maxwell Powder. La Grande.	° 210 246 273 282 338	, 00 05 43 26 33 37	77 59. 92 10. 37 21. 56 25. 22 20. 52 37. 30	,, 00. 16 09. 81 21. 13 25. 60 20. 21 37. 97
La Grande, 1.39 meters	$\left\{ \begin{array}{c} 235\\ 234 \end{array} \right.$	Fanny Emily	0 265	00 19	59.98 03.24	59.31 03.91
Emily, 1.41 meters	$\left\{\begin{array}{c} 125\\ 126\\ 127\\ 128\\ 129\\ 130\end{array}\right.$	Fanny. Maxwell. La Grande. Powder. Birch. Big Hill.	0 63 69 149 182	56 04 10	59.91 57.42 39.98 53.45 48.80 09.99	59. 36 56. 40 42. 62 53. 03 48. 67 09. 47
Big Hill, 1.42 meters	$\begin{cases} 141 \\ 142 \\ 143 \\ 144 \\ 145 \end{cases}$	Emily. Powder. Birch. Alkali. Laurila.	0 40 80 142 188	00 24 01 32 04	59.92 49.61 07.46 45.26 37.79	59.65 50.37 08.30 44.93 36.29
Birch, 1.15 meters	$\left\{ \begin{array}{c} \cdot & 136 \\ 137 \\ 138 \\ 139 \\ 140 \end{array} \right.$	Alkali. Laurila. Big Hill. Emily. Powder.	0 38 86 152 213	00 16 07 59 17	59. 97 34. 17 28. 68 00. 01 28. 88	59.70 34.31 27.77 00.53 29.41
Alkali, 1.23 meters.	$\left\{\begin{array}{c} 146\\ 147\\ 148\\ 149\\ 150\end{array}\right.$	Job. Expansion Laurila Big Hill. Birch	0 33 71 134 165	00 13 03 34 55	59. 97 34. 98 12. 82 21. 28 18. 69	00. 21 33. 99 12. 29 21. 83 19. 40
Laurila, 1.24 meters	$\left\{ \begin{array}{c} 151 \\ 152 \\ 153 \\ 154 \\ 155 \end{array} \right.$	Big Hill. Birch Alkali. Job Expansion.	0 24 70 108 173	05 57 18	59.94 39.93 01.69 07.60 00.02	59.67 40.53 02.09 07.57 59.32
Expansion, 1.27 meters	(162a 163a 164 165 166 167 168	Laurila. Alkali. Stanfield east base. Job. Stanfield west base. Ella. Alder.	0 39 56 59 97 100 137	00 49 01 18 05 44 02	59.98 26.42 08.58 17.83 44.05 21.13 09.02	00.06 27.15 08.88 17.58 43.23 21.42 08.70
Job, 1:40 meters	156 157 158 159 160 • 161 162 163	Ella. Alder Stanfield west base. Expansion Stanfield east base. Echo Laurila. Alkali.	0 37 55 100 105 142 156 228	00 28 17 45 39 32 27 02	00. 01 45. 67 29. 34 08. 10 53. 25 18. 54 00. 81 44. 78	59.37 46.03 30.11 07.70 53.01 18.43 00.85 44.98
Stanfield east base, 1.18 meters	$\left\{\begin{array}{c} 173\\ 174\\ 175\\ 175\\ 172\end{array}\right.$	Job. Stanfield west base Expansion Echo	0 88 171 287	00 59 48 04	00.00 21.42 05.34 59.70	00. 16 21. 14 06. 26 58. 91
Stanfield west base, 4.17 meters	<pre> 169 170 171 </pre>	Expansion Stanfield east base Job	0 56 96	00 06 44	00.00 40.97 57.71	59.72 41.13 57.84
Echo, 1.20 meters.	{ 177 { 176	Stanfield east base Job	0 289	00 47	00.00 26.16	59.90 26.27
Eila, 1.18 meters	178 179 190 181 182	Toby Montgomery Alder Expansion Job	0 43 78 140 177	25	00. 01 49. 23 19. 37 01. 81 53. 46	59. 29 49. 53 19. 56 02. 19 53. 30

•

Station occupied and elevation of in- strument above station mark.	Number of direc- tion.	Object observed.	Observed direction reduced to sea level.		Final seconds after figure adjust- ment.	
Alder, 1.25 meters	183 184 185 186 187	Expansion Job Ella Toby Montgomery		, 59 19 04 45	" 00. 01 51. 99 35. 30 51. 75 38. 58	" 00. 53 52. 03 34. 78 51. 95 38. 34
Montgomery, 1.17 meters	$\left\{\begin{array}{c} 188\\ 189\\ 190\\ 191\\ 191\\ 192\end{array}\right.$	Alder Ella. Toby John Maryhill	42 78	00 16 19 30 46	00. 01 29. 25 42. 69 18. 77 20. 17	00. 36 29. 14 42. 41 18. 62 20. 35
Toby, 1.07 meters,	$\left\{\begin{array}{c} 193\\ 194\\ 195\\ 196\\ 196\\ 197\end{array}\right.$	John . Maryhill . Montgomery . Alder Ella.	0 48 88 133 189	00 27 45 44 16	00. 03 53. 84 08. 81 42. 64 07. 35	59. 43 54. 03 08. 76 42. 74 07. 71
John, 1.20 meters	$\begin{cases} 200 \\ 201 \\ 202 \\ 198 \\ 199 \end{cases}$	Maryhill Montgomery. Toby Lookout Stacker	0 42 84 279 326	52	59. 97 36. 47 54. 54 37. 93 15. 52	59.96 37.04 54.79 37.68 14.94
Maryhill, 1.22 meters	$\left\{\begin{array}{c} 203\\ 204\\ 205\\ 206\\ 207\end{array}\right.$	Montgomery. Toby. John Lookout. Stacker	40 87 157	16 40 16	10.09	59.85 10.06 24.39 53.86 17.70
Stacker, 1.22 meters	$\begin{cases} 208 \\ 209 \\ 210 \\ 211 \\ 212 \end{cases}$	Maryhill John Lookout Chinidere. Huckle	47 134 171	00 35 52 56 20	00. 01 24. 06 19. 88 13. 30 48. 66	59.69 24.19 20.60 12.78 48.63
Lookout, 1.37 meters	$\left\{\begin{array}{c} 215\\ 216\\ 217\\ 213\\ 213\\ 214\end{array}\right.$	Stacker. Maryhill John Chiridere. Huckle.	15 45 281	00 39 55 50 21	00. 05 17. 83 32. 76 20. 17 47. 71	59.77 17.77 33.07 20.55 47.37
Huckle, 1.20 meters	$\left\{\begin{array}{c} 218\\ 219\\ 220\\ 221\\ 221\\ 222\end{array}\right.$	Stacker. Lookout. Chinidere. Larch Red.	0 54 82 105 189	12	59. 96 25. 95 58. 74 14. 46 23. 87	59. 92 26. 00 58. 82 14. 46 23. 78
Chinidere, 1.32 meters	$\left\{\begin{array}{c} 226\\ 227\\ 223\\ 224\\ 225\end{array}\right.$	Stacker. Lookout Larch Red. Huckle.	0 64 179 283 298	46 14 31	33. 96 49. 89	00. 46 33. 68 49. 61 43. 98 30. 85
Red, 1.09 meters	Example 1 = 229 Example 230 228 228	Chinidere Larch Huckle	0 26 302		44.91	59.81 45.22 10.77
Larch, 1.30 metors	$\begin{cases} & & 231 \\ & & 232 \\ & & 233 \end{cases}$	Star Red Huckle. Chinidere.		09 29	00.00 49.54 06.07 10.82	00. 24 49. 29 06. 83 11. 64

Abstract of horizontal directions and elevations of telescope above the station marks— Continued.

CONDITION EQUATIONS.

		OOUDITION	1.1 10 1
No.			
1.	0 = -2.67 - (1) + ($\begin{array}{cccccccccccccccccccccccccccccccccccc$	36).
2.	0 = -1.95 - (2) + (3)-(4)+(6)-(7)+(8).
3.	0 = -1.31 - (5) + (6) - (7) + (9) - (34) + (35).
4.	0 = +0.18 - (9) + (1)	3) - (4) + (6) - (7) + (6) - (7) +	34).
_			
5.	0 = +0.43 - (14) + (14)	15)-(25)+(26)-(32)+(33).
6.	0 = +0.89 - (11) + (1)	(5)-(25)+(26)-(32)+(2)+(13)-(17)-(18)+(2)	10).
7.	0 = -0.24 - (16) + (1)	(7) - (19) + (20) - (21) + (22).
8.	0 = +2.09 - (15) + (1)	(6) - (22) + (23) - (24) + (23)	25).
9.	0 = +1.92 - (26) + (26)	(6) - (22) + (23) - (24) + (27) - (30) + (32) + (37) - (40).

Þ

No. 10. 11. 12. 13. 14.	$\begin{array}{l} 0 = -0.59 - (27) + (28) - (39) + (40) - (41) + (42). \\ 0 = +0.81 - (38) + (39) - (42) + (43) - (49) + (50). \\ 0 = -3.28 - (29) + (30) - (37) + (38) - (50) + (51). \\ 0 = -0.98 - (43) + (44) - (48) + (49) - (52) + (53). \\ 0 = -1.24 - (43) + (45) - (47) + (49) - (62) + (64). \end{array}$
15. 16. 17. 18. 19.	$\begin{array}{l} 0 = -2.89 - (47) + (48) - (53) + (55) - (63) + (64).\\ 0 = +0.59 - (46) + (48) - (53) + (54) - (60) + (61).\\ 0 = -2.73 - (54) + (55) - (59) + (60) - (63) + (65).\\ 0 = -1.92 - (57) + (69) - (65) + (66) - (69) + (70).\\ 0 = +0.42 - (56) + (59) - (65) + (67) - (75) + (77). \end{array}$
20. 21. 22. 23. 24.	$\begin{array}{l} 0 = -0.09 - (56) + (57) - (70) + (71) - (76) + (77).\\ 0 = -0.11 - (56) + (58) - (74) + (77) - (79) + (80).\\ 0 = -1.05 - (67) + (68) - (74) + (75) - (78) + (80).\\ 0 = +1.56 - (72) + (74) - (80) + (81) - (91) + (92).\\ 0 = -0.70 - (72) + (73) - (84) + (85) - (90) + (92). \end{array}$
25. 26. 27. 28. 29.	$\begin{array}{l} 0 = -1.54 - (81) + (82) - (83) + (85) - (90) + (91).\\ 0 = +0.32 - (85) + (87) - (89) + (90) - (93) + (94).\\ 0 = -1.23 - (86) + (87) - (93) + (95) - (101) + (102).\\ 0 = +0.88 - (88) + (89) - (94) + (95) - (101) + (103).\\ 0 = -1.10 - (95) + (96) - (100) + (101) - (107) + (108). \end{array}$
30. 31. 32. 33. 34.	$\begin{array}{l} 0 = -0.33 - (96) + (98) - (106) + (107) - (109) + (110). \\ 0 = -1.08 - (97) + (98) - (109) + (111) - (116) + (117). \\ 0 = +0.74 - (104) + (106) - (110) + (111) - (116) + (118). \\ 0 = -0.38 - (104) + (105) - (115) + (118) - (120) + (121). \\ 0 = -0.64 - (111) + (112) - (115) + (116) - (119) + (121). \end{array}$
35. 36. 37. 38. 39.	$\begin{array}{l} 0 = +0.91 - (114) + (115) - (121) + (124) - (125) + (126).\\ 0 = +1.22 - (113) + (115) - (121) + (122) - (134) + (135).\\ 0 = -0.23 - (122) + (124) - (125) + (128) - (133) + (134).\\ 0 = -1.42 - (123) + (124) - (125) + (127) - (234) + (285).\\ 0 = -2.90 - (128) + (130) - (132) + (133) - (141) + (142). \end{array}$
40. 41. 42. 43. 44.	$\begin{array}{l} 0 = -0.41 - (123) + (129) - (131) + (133) - (139) + (140). \\ 0 = -2.15 - (129) + (130) - (138) + (139) - (141) + (143). \\ 0 = +1.65 - (136) + (138) - (143) + (144) - (149) + (150). \\ 0 = -1.45 - (136) + (137) - (148) + (150) + (152) + (153). \\ 0 = -1.08 - (144) + (145) - (148) + (149) - (151) + (158). \end{array}$
45. 46. 47. 48. 49.	$\begin{array}{l} 0 = +1.04 - (146) + (148) - (153) + (154) - (162) + (163). \\ 0 = -0.01 - (147) + (148) - (153) + (155) - (162a) + (163a). \\ 0 = +0.56 - (154) + (155) - (159) + (162) - (162a) + (165). \\ 0 = +1.32 - (158) + (159) - (156) + (166) + (171). \\ 0 = +1.48 - (158) + (160) - (170) + (171) - (173) + (174). \end{array}$
50. 51. 52. 53. 54.	$\begin{array}{l} 0 = -0.52 - (164) + (166) - (169) + (170) - (174) + (175).\\ 0 = -0.87 - (160) + (161) - (172) + (173) - (176) + (177).\\ 0 = +1.31 - (157) + (159) - (165) + (168) - (183) + (184).\\ 0 = -0.24 - (156) + (159) - (165) + (167) - (181) + (182).\\ 0 = -0.09 - (156) + (157) - (180) + (182) - (184) + (185). \end{array}$
55. 56. 57. 58. 59.	$\begin{array}{l} 0 = -1.26 - (178) + (179) - (189) + (190) - (195) + (197), \\ 0 = -1.89 - (178) + (180) - (185) + (186) - (196) + (197), \\ 0 = +0.29 - (179) + (180) - (185) + (187) - (188) + (189), \\ 0 = -0.36 - (190) + (191) - (193) + (195) - (201) + (202), \\ 0 = -0.36 - (190) + (192) - (194) + (195) - (203) + (204), \end{array}$
60. 61. 62. 63. 64.	$\begin{array}{l} 0 = -1.15 - (191) + (192) - (200) + (201) - (203) + (205).\\ 0 = -1.53 - (199) + (200) - (205) + (207) - (208) + (209).\\ 0 = -0.08 - (198) + (200) - (205) + (206) - (216) + (217).\\ 0 = -0.55 - (198) + (199) - (209) + (210) - (215) + (217).\\ 0 = +2.61 - (210) + (211) - (213) + (215) - (226) + (227). \end{array}$
65. 66. 67. 68. 69.	$\begin{array}{l} 0 = +0.\ 60 - (210) + (212) - (214) + (215) - (218) + (219). \\ 0 = -1.\ 18 - (211) + (212) - (218) + (220) - (225) + (226). \\ 0 = -0.\ 12 - (220) + (221) - (223) + (225) - (232) + (233). \\ 0 = +0.\ 71 - (220) + (222) - (222) + (225) - (222) + (229). \\ 0 = -1.\ 56 - (223) + (224) - (229) + (230) - (231) + (233). \end{array}$
70. 71.	0 = +2.98 - 2.24(1) + 3.08(2) - 0.84(3) - 2.30(4) + 4.45(5) - 2.15(6) + 0.19(7) + 2.92(8) - 3.11(9), 0 = +6.77 + 0.06(9) + 8.95(10) - 9.01(11) + 5.11(13) - 5.11(15) + 0.55(25) - 0.55(26) - 2.93(32) + 6.79(33)
72.	$\begin{array}{c} -3, 86(34), \\ 0 = -7, 46 - 8, 95(10) + 11, 74(11) - 2, 79(12) - 5, 11(13) + 5, 11(15) - 2, 68(18) + 5, 40(19) - 2, 72(20) - 3, 40(21) \\ + 2, 90(22) + 0, 50(23) - 1, 18(24) + 1, 18(25), \\ 0 = -6, 84 - 3, 62(26) + 7, 15(27) - 3, 53(28) - 4, 10(29) + 6, 67(30) - 2, 57(32) - 0, 38(41) + 3, 10(42) - 2, 72(43) \\ - 1, 67(49) + 2, 73(50) - 1, 06(51), \\ 0 = 10, 100, 100, 100, 100, 100, 100, 1$
73. 74.	$\begin{array}{l} 0 = -6, \ 84 - 3, \ 62(26) + 7, \ 15(27) - 3, \ 53(28) - 4, \ 10(29) + 6, \ 67(30) - 2, \ 57(32) - 0, \ 38(41) + 3, \ 10(42) - 2, \ 72(43) \\ - 1, \ 67(49) + 2, \ 73(50) - 1, \ 06(51), \\ 0 = + \ 466, \ 10 - 4(29) + 3376(30) - 2572(31) - 1417(37) + 1417(39) + 3(42) - 3(43) - 2(49) + 3(50) - 1(51), \\ \end{array}$
75.	0 = +14.52 - 1.02(43) + 24.56(44) - 23.54(45) - 6.47(47) + 7.90(48) - 1.43(49) - 16.09(62) + 19.84(63)
-	-3.75(64).

 $\begin{array}{l} -3.76(04).\\ -3.78(04).\\ -0.32(2-1.41(46)+6.47(47)-5.06(48)-2.80(59)+4.38(60)-1.58(61)-3.42(63)+3.75(64)-0.33(65).\\ -32.80-2.11(56)+6.96(57)-4.85(59)-1.14(65)+8.48(66)-7.34(67)-24.40(75)+28.18(76)-3.78(77).\\ -4.92-0.83(56)+5.37(58)-4.54(59)-2.07(74)+5.19(75)-3.12(77)-6.18(78)+6.93(79)-0.75(80).\\ -10.51-4.68(72)+11.19(73)-6.51(74)+0.78(80)+2.60(81)-3.38(82)-3.88(90)+3.64(91)+0.24(92).\\ \end{array}$ 7077.78.70

53905°-21-5

No. 80. 81.	0 = +4.32 - 2.90(85) + 3.64(86) - 0.74(87) - 2.71(93) + 4.29(94) - 1.58(95) - 0.72(101) + 5.06(102) - 4.34(103). 0 = +22.75 - 2.09(95) + 8.85(96) - 6.76(97) - 17.14(99) + 18.30(100) - 1.16(101) + 7.42(104) - 7.42(108)
82.	$\begin{array}{c} -3.92(117)+3.92(118).\\ 0=-2.57-5.08(96)+6.76(97)-1.68(98)-1.47(109)+3.95(110)-2.48(111)-0.42(116)+3.92(117)\end{array}$
83.	$\begin{array}{l} -3.50(118).\\ 0=-1.94-1.16(104)+6.33(105)-5.17(106)-3.37(115)+3.79(116)-0.42(118)-1.78(119)+2.83(123)\end{array}$
84.	$\begin{array}{c} -1.05(121), \\ 0=+21.63-1.96(113)+2.90(114)-0.94(115)-13.12(121)+13.59(122)-0.47(124)-0.80(125)+21.48(126)\\ -20.68(128). \end{array}$
85.	0 = +20.13+0.90(128)+3.23(129)-4.13(130)-8.96(131)+13.21(132)-4.25(133)-2.50(138)+0.90(139) +1.60(140).
86.	0 = -6.09 - 0.14(136) + 1.91(137) - 1.77(138) - 1.05(148) + 4.51(149) - 3.46(150) - 3.98(151) + 4.71(152) - 0.73(153).
87.	0 = -1.53 - 2.49(146) + 3.21(147) - 0.72(143) - 2.76(153) + 3.74(154) - 0.98(155) - 1.25(162a) + 5.95(163a) - 4.70(165).
88.	0 = +22.48 - 1.75(158) + 24.50(159) - 22.75(160) - 34.25(164) + 36.67(165) - 2.42(166) - 1.41(169) + 3.86(170)
89.	$\begin{array}{r} -2.45(171).\\ 0=-6.8315(156)+2.75(157)+0.40(159)-2.38(165)+5.25(167)-2.87(168)-0.29(183)+2.24(184)\\ -1.95(185).\end{array}$
90.	0 = + 0.13 - 0.42(178) + 2.98(179) - 2.56(180) - 1.88(188) + 2.32(189) - 0.44(190) - 2.10(195) + 3.55(196) - 1.45(197).
91.	0 = -3.06 - 0.05(193) + 2.48(194) - 2.43(195) - 2.33(200) + 4.66(201) - 2.33(202) - 2.40(203) + 2.49(204) - 0.09(205).
92.	0 = -1.63 - 0.37(199) + 3.20(199) - 2.83(200) - 4.02(208) + 1.92(209) + 2.10(210) - 7.51(215) + 11.12(216) - 3.61(217).
93.	0 = +7.72 - 2.79(210) + 5.65(211) - 2.86(212) - 3.78(213) + 4.22(214) - 0.44(215) - 0.29(218) + 4.08(219) - 3.79(220).
94.	0 = -9.84 + 1.18(223) + 7.80(224) - 8.98(225) - 1.10(228) + 1.34(229) - 0.24(230) - 9.64(231) + 12.40(232) - 2.76(233).
95.	$\begin{array}{c} 0 = +23, 95 = 0.84(1) + 0.84(3) - 2.15(5) + 2.15(6) - 0.19(7) - 2.48(9) + 2.67(10) - 1.55(26) \\ + 1.55(28) - 4.08(29) + 3.70(31) - 1.21(32) + 1.59(34) + 0.89(35) - 0.80(36) - 0.80(43) \\ + 0.80(45) - 2.68(46) + 2.68(47) - 0.98(49) + 0.98(51) - 0.83(56) + 0.83(59) + 2.82(62) \\ - 2.82(64) - 1.02(67) + 1.02(66) - 2.33(72) + 2.33(74) + 3.12(75) - 3.12(77) + 0.75(78) \\ - 0.75(80) - 2.60(81) + 2.60(82) - 0.80(83) + 0.06(85) + 0.74(87) - 1.43(88) + 1.43(89) \\ + 0.92(91) - 0.92(92) + 2.71(83) - 2.71(94) - 2.18(95) - 0.92(97) + 3.10(96) - 2.83(100) \\ + 3.53(101) - 0.72(103) - 0.20(109) + 0.20(112) - 0.94(113) + 0.94(115) + 1.05(119) - 1.65(121) \\ - 0.47(122) + 0.47(124) + 0.80(125) - 0.80(128) - 3.23(129) - 1.20(140) + 0.37(141) - 0.37(143) \\ - 2.07(144) + 0.56(135) - 0.14(138) + 1.20(149) + 1.26(162) - 1.20(140) + 0.37(151) - 0.73(143) \\ - 0.98(154) + 0.98(155) - 2.07(154) + 2.07(194) + 0.36(159) + 1.20(164) - 0.73(151) - 0.73(153) \\ - 0.98(154) + 0.98(155) - 2.07(154) + 2.07(194) + 0.20(122) + 1.26(162) - 0.70(163) - 2.42(164) \\ \end{array}$
	+0.80(45)-2.68(46)+2.68(47)-0.98(49)+0.98(51)-0.83(56)+0.83(59)+2.82(62)-2.82(64)-1.02(67)+1.02(68)-2.33(72)+2.33(74)+3.12(75)-3.12(77)+0.75(78)
	-0.75(80) - 2.60(81) + 2.60(82) - 0.80(83) + 0.06(85) + 0.74(87) - 1.43(88) + 1.43(89)
	+3.53(101) - 0.72(103) - 0.20(109) + 0.20(112) - 0.94(113) + 0.94(115) + 1.05(119) - 1.05(121) - 0.47(122) + 0.47(124) + 0.80(125) - 0.80(125) - 0.23(120) + 2.55(131) + 2.55(133)
	-0.56(134)+0.56(135)-0.14(136)+0.14(138)+1.20(139)-1.20(100)-2.50(110)-2.50(141)-0.37(143) -0.56(134)+0.56(135)-0.14(136)+0.14(138)+1.20(139)-1.20(140)-0.37(141)-0.37(143)
96.	-1.25(165)+2.42(166)-0.25(169)+0.25(171)+0.26(174)-0.26(175). 0-7.60-2.75(156)+2.75(157)+2.07(158)-2.07(159)+2.42(164)-0.46(165)-2.42(166)+0.46(168)
	$\begin{array}{c} +0.25(169)-0.25(171)-0.26(174)+0.26(175)-0.42(178)+0.08(180)+0.34(182)+2.60(183)\\ -2.60(184)-1.38(186)+1.38(187)+0.44(188)-0.44(190)-1.75(191)+1.75(192)-0.05(193) \end{array}$
	$\begin{array}{l} + 0.05(195) + 1.45(196) - 1.45(197) - 1.98(198) + 1.98(199) + 2.33(201) - 2.33(202) + 0.09(203) \\ + 0.25(205) - 0.34(207) + 1.92(208) - 1.92(209) - 2.80(211) + 2.86(212) - 0.44(213) + 2.48(215) \\ - 2.04(217) + 0.29(218) + 0.39(220) - 0.65(222) + 0.64(223) + 0.54(224) + 0.99(226) - 0.99(227) \end{array}$
	+1.34(228)-1.34(229)+1.79(231)-1.79(233).
97. 98.	0 = + 2.05 + (1) - (3) + (29) - (36) + (46) - (51) + (57) - (61). 0 = - 2.75 - (66) + (68) + (69) - (70) - (78) + (82) - (83) + (87) - (93) + (98) - (109) + (112) - (119) + (123)
99.	+(234)-(235). 0=+5.80-(127)+(130)-(141)+(145)-(151)+(155)-(162a)+(164)+(172)-(175).
100.	0 = 1.22 - (172) + (175) - (164) + (168) - (183) + (187) - (188) + (192) - (203) + (207) - (208) + (212) - (218)
101.	$\begin{array}{c} +(222)-(228)+(230)\\ 0=-0.8831+0.64(1)-0.64(3)-1.20(5)+1.20(6)-0.76(7)+0.16(9)+0.60(10)-0.35(26)\\ 0=-0.8831+0.64(1)-0.64(3)-1.20(5)+1.20(6)-0.76(7)+0.16(9)+0.60(10)-0.35(26)\\ 0=-0.8831+0.64(1)-0.64(1)$
	$\begin{array}{c} +0.35(28)+0.03(29)+0.61(31)-0.27(32)-0.36(34)+1.10(35)-1.10(36)-0.81(43)\\ +0.81(45)+0.13(46)-0.13(47)+0.52(49)-0.52(51)+0.43(56)+0.13(59)-0.56(61) \end{array}$
	$\begin{array}{c} -0.11(62) + 0.11(64) - 0.64(67) + 0.64(68) + 0.20(72) - 0.20(74) + 1.07(75) - 1.07(77) \\ -0.32(78) + 0.32(80) - 0.75(81) + 0.75(82) - 0.53(83) + 0.01(85) + 0.52(87) + 0.30(88) \end{array}$
	-0.30(89)+0.62(91)-0.62(92)-0.09(93)+0.09(94)-0.60(95)+0.07(97)+0.53(98)-0.23(99)+0.71(101)-0.48(103)-0.34(109)+0.34(112)+0.33(113)-0.33(115)-0.26(119)
	+0.26(121)-0.35(122)+0.35(124)-0.27(125)+0.27(128)-0.39(129)+0.39(130)+0.25(131)-0.25(133)+0.34(134)-0.34(135)+0.29(136)-0.29(138)+0.36(139)-0.36(140)-0.27(141)
	+0.27(143)-0.29(144)+0.29(145)+0.25(146)-0.25(148)+0.36(149)-0.36(150)-0.22(151) +0.22(153)-0.24(154)+0.24(155)+0.15(156)-0.15(157)+0.26(162)-0.26(163)-0.20(162a)
	-0.03(165) + 0.23(168) + 0.16(178) - 0.16(182) - 0.18(183) + 0.18(184) - 0.18(188) + 0.18(187) - 0.14(188) + 0.14(190) - 0.16(191) + 0.16(192) + 0.13(193) - 0.13(195) + 0.17(196) - 0.17(197)
	+0.04(198) -0.04(199) +0.15(201) -0.15(202) -0.11(203) +0.01(205) +0.10(207) -0.05(208) +0.05(209) -0.06(211) +0.06(212) +0.06(213) +0.03(215) -0.09(217) +0.01(220) -0.01(222)
100	$\pm 0.08(226) \pm 0.08(227) \pm 0.03(228) \pm 0.03(229)$
102.	+0.76(28)-2.36(29)+1.49(31)-0.59(32)+1.49(34)-0.38(35)+0.38(36)+0.22(43)
	+1, 83(62) - 1, 83(64) + 0, 22(67) - 0, 22(68) - 1, 19(72) + 1, 19(74) + 0, 71(75) - 0, 71(77)
	+0. 77(78) -0. 77(80) -0. 38(81) +0. 38(82) +0. 14(83) +0. 02(85) -0. 16(87) -0. 66(88) +0. 66(89) -0. 07(91) +0. 07(92) +1. 16(93) -1. 16(94) -0. 38(95) -0. 12(97) +0. 50(98) +0. 66(89) -0. 07(91) +0. 07(92) +1. 16(93) -1. 16(94) -0. 38(95) -0. 12(97) +0. 50(98) +0. 12(97)
	-0.81(99)+0.77(101)+0.04(103)+0.15(109)-0.15(112)-0.34(113)+0.34(115)+0.43(119)-0.43(121)+0.08(122)-0.08(125)-0.36(125)-0.38(123)-0.52(129)+0.52(130)-0.66(131)-0.52(129)+0.52
	+0.66(133)-0.25(134)+0.25(135)-0.09(136)+0.09(138)+0.18(139)-0.18(140)+0.17(141)-0.17(143)-0.27(144)+0.27(145)-0.14(146)+0.14(145)+0.62(149)-0.62(150)+0.19(151)-0.17(145)-0.17(145)-0.17(145)+0.14(145)+0.62(149)-0.62(150)+0.19(151)-0.17(145)-0.17(145)-0.17(145)+0.14(145)+0.62(149)-0.62(149)+0.19(151)-0.17(145)-0.17(145)-0.17(145)+0.17(15)+0.1
	$\begin{array}{c} -0.19(153)-0.10(154)+0.10(155)-0.33(156)+0.33(157)+0.10(162)-0.10(163)+0.24(162a)\\ -0.26(165)+0.02(168)-0.06(178)+0.01(180)+0.05(182)+0.44(183)-0.44(184)-0.06(186)\\ \end{array}$
	+0.06(187)+0.12(188)-0.12(190)-0.03(191)+0.03(192)-0.03(193)+0.03(195)+0.15(196)-0.15(197)-0.13(198)+0.13(199)+0.19(201)-0.19(202)+0.10(203)+0.02(205)-0.12(207)
	+0. 24(208) -0. 24(209) +0. 06(211) -0. 06(212) -0. 06(213) +0. 11(215) -0. 05(217) +0. 06(218) -0. 06(222) +0. 06(228) -0. 06(229).

COMPUTED CORRECTIONS TO OBSERVED DIRECTIONS.

The corrections to observed directions resulting from the figure adjustments indicated by the preceding condition equations are as follows:

	2.01.w . ruary				1	1	
Number of direc- tion.	Correction to direc- tion.	Number of direc- tion.	Correction to direc- tion.	Number of direc- tion.	to direc- tion.	Number of direc- tion.	Correction to direc- tion.
1 2 3 4 5	-0.432-0.271+0.703-0.331+0.006	61 62 63 64 65	$ \begin{array}{r} -0.038 \\ -0.178 \\ -1.152 \\ +0.305 \\ +0.202 \end{array} $	121 1 22 123 124 125	+0. 381 -0. 308 +0. 670 +0. 245 -0. 548	181 182 183 184 185	$\begin{array}{r} +0.\ 383 \\ -0.\ 156 \\ +0.\ 522 \\ +0.\ 041 \\ -0.\ 521 \end{array}$
6 7 8 9 10	+0.325 -0.386 -0.067 +0.754 -0.291	66 67 68 69 70	+1. 158 -0. 499 +0. 165 -0. 980 +0. 413	126 127 128 129 130	-1.021 +2.635 -0.420 -0.131 -0.515	186 187 188 189 190	$\begin{array}{r} +0.\ 197 \\ -0.\ 239 \\ +0.\ 355 \\ -0.\ 103 \\ -0.\ 280 \end{array}$
11 12 13 14 15	+0.237 -0.246 -0.195 +0.312 +0.194	71 72 73 74 75	+0.567 +0.658 +0.430 -0.615 -0.753	131 132 133 134 135	+0.552 -1.307 +0.665 +0.214 -0.124	191 192 193 194 195	$\begin{array}{r} -0.151 \\ +0.178 \\ -0.602 \\ +0.191 \\ -0.052 \end{array}$
16 17 18 19 20	-0. 326 +0. 015 +0. 214 +0. 017 -0. 231	76 77 78 79 80	+0.022 +0.258 -0.348 -0.144 +0.173	136 137 138 139 140	-0. 270 +0. 136 -0. 909 +0. 517 +0. 526	196 197 198 199 200	+0. 100 +0. 364 -0. 241 -0. 574 -0. 008
21 22 23 24 25	+0, 196 +0, 343 -0, 538 +0, 534 -0, 154	81 82 83 84 85	+0. 428 -0. 109 -0. 504 +0. 103 +0. 726	141 142 143 144 145	-0.268 +0.756 +0.840 -0.327 -1.000	201 202 203 204 205	+0. 572 +0. 252 -0. 170 -0. 027 +0. 071
26 27 28 29 30	-0. 205 +0. 012 -0. 188 -0. 668 +0. 571	86 87 88 89 90	$\begin{array}{r} -0.499 \\ +0.174 \\ +0.922 \\ -0.208 \\ -0.625 \end{array}$	146 147 148 149 150	+0. 240 -0. 982 -0. 628 +0. 556 +0. 712	206 207 208 209 210	-0. 457 +0. 578 -0. 317 +0. 135 +0. 723
31 32 33 34 35	-0.318 -0.487	91 92 93 94 95	+0. 226 -0. 311 -0. 691 -0. 043 +0. 173	151 152 153 154 155	-0. 270 +0. 595 +0. 400 -0. 028 -0. 696	211 212 213 214 215	-0. 516 -0. 025 +0. 380 -0. 342 -0. 284
36 37 38 39 40	-0.142	96 97 98 99 100	+0. 370 +0. 182 +0. 009 +0. 961 -0. 391	156 157 158 159 160	-0. 634 +0. 363 +0. 774 -0. 395 -0. 239	216 217 218 219 220	$\begin{array}{r} -0.064 \\ +0.310 \\ -0.039 \\ +0.050 \\ +0.082 \end{array}$
41 42 43 44 45	0. 203 -0. 097 +0. 359	101 102 103 104 105	-0.099 -0.404 -0.066 +0.270 +0.374	161 162 163 164 165	$\begin{array}{r} -0.106 \\ +0.040 \\ +0.196 \\ +0.300 \\ -0.251 \end{array}$	221 222 223 224 225	-0.004 -0.089 -0.285 +0.272 -0.137
46 47 48 49 50	-0.437 -0.025 +0.005	106 107 108 109 110	-0.260 -0.497 +0.113 -0.714 +0.214	166 167 168 169 170	-0. 820 +0. 288 -0. 323 -0. 285 +0. 160	226 227 228 229 230	+0. 429 -0. 278 +0. 019 -0. 110 +0. 090
51 52 53 54 55	-0.630 -0.150 -0.095	111 112 113 114 115	+0.260 +0.240 +0.247 +0.354 +0.054	171 172 173 174 175	+0. 124 -0. 796 +0. 154 -0. 277 +0. 919	231 232 233 234 235	-0.516 +0.229 +0.288 +0.670 -0.670
50 57 58 59 60	-0.588	116 117 118 119 120	-0, 226 +0, 053 -0, 482 -0, 558 -0, 430	176 177 178 179 180	+0. 108 -0. 108 -0. 719 +0. 302 +0. 189	162a 163a	+0.077 +0.729

Table of corrections to observed directions.

COBRECTIONS TO ANGLES AND CLOSURES OF TRIANGLES.

The correction to each angle is the algebraic sum of the corrections to two directions. In order to make it possible to study the corrections to the separate angles, they are shown in the following table for every triangle in the precise scheme. There are shown the corrections to the angles resulting from the figure adjustment, the errors of closure of the triangles, the corrected spherical angles, and the spherical excess for each triangle. The plus sign prefixed to the error of closure of a triangle indicates that the sum of the angles is less than 180° plus the spherical excess. The spherical excess is a convenient indication of the size of the triangle, since it is proportional to the area.

Station.	Correc- tion to angle from figure adjust- ment.	Error of closure of tri-	Corrected spherical angle.	Spher- ical excess.	Station.	Correc- tion to angle from figure adjust- ment.	of closure of tri-	Corrected spherical angle.	Spher- ical excess.
Cache Ogden Peak. Pilot Peak	+.34	,, }+2.67	• , , , , , , , , , , , , , , , , , , ,	" } 58, 52	Picabo Big Butte Cache	1+0.02	 }	• , ,, 79 47 48.58 60 58 22.06 39 14 19.02	,, } 29.66
Oxford Ogden Peak. Pilot Peak	+ .32 + .66 + .97	}+1.95	{ 59'16 09.30 86 54 01.49 33 50 45.67	56.46	Picabo Cache Kimama	+ . 45 80	}	0 05 07.28 0 03 21.63 179 51 31.12	}.03
Oxford Ogden Peak. Cache	+ 32	+1.31	85 03 21.93 44 24 59.97 40 32 17.39	} 39. 29	Flat Picabo Kimama	28 + .10 63	}-0.81	{ 51 38 40. 47 37 42 24. 54 90 39 00. 09	5, 10
Oxford Pilot Peak Cache	+ .82 + .16 +1.05	+2.03	{ 35 47 12.63 34 24 17.88 109 49 10.84	<u>}</u> 41. 35	Flat Picabo Cache		}	$ \begin{bmatrix} 114 & 56 & 50, 71 \\ 37 & 47 & 31, 82 \\ 27 & 15 & 50, 37 \end{bmatrix} $	} 12.90
Putnam Oxford Cache	$+ .51 \\51 \\18$	} 18	$\left\{\begin{array}{cccc} 59 & 54 & 36, 50 \\ 91 & 30 & 02, 58 \\ 28 & 35 & 44, 40 \end{array}\right.$	23. 48	Flat Kimama Cache	+1.43	}+3. 26	63 18 10. 24 89 29 28. 79 27 12 28. 74	} 7.77
Big Butte Putnam Oxford	+ . 39 + . 53	}	$\left\{ \begin{array}{cccccc} 22 & 23 & 53 & 86 \\ 128 & 53 & 27 & 48 \\ 28 & 42 & 51 & 41 \end{array} \right.$	} 12, 75	Green Picabo Flat	+ . 48 + . 46 + . 04	}+ .98	$\left\{\begin{array}{l} 59 \ 55 \ 16. \ 22 \\ 64 \ 10 \ 06. \ 62 \\ 55 \ 54 \ 46. \ 32 \end{array}\right.$	9. 16
Big Butte Putnam Cache	05 12 26	} 43	75 18 02. 42 68 58 50. 98 35 43 38. 53	31.93	Camas Picabo Green	97 15 -1.51	-2.63	$\left\{\begin{array}{c}7 & 27 & 10. \ 47 \\5 & 06 & 40. \ 62 \\167 & 26 & 10. \ 87\end{array}\right.$	1.46
Big Butte Oxford Cache		1	$\left\{\begin{array}{ccccc} 52 & 54 & 08 & 56 \\ 62 & 47 & 11 & 17 \\ 64 & 19 & 22 & 93 \end{array}\right.$	} 42.66	Camas Picabo Flat	+ .31	+1.24	36 46 48. 81 69 16 47. 24 73 56 39. 92	15. 97
Middle Butte Putnam Big Butte	88 52 69	-2.09	$ \left\{ \begin{matrix} 103 & 22 & 07. \ 88 \\ 15 & 49 & 42. \ 01 \\ 60 & 48 & 15. \ 16 \end{matrix} \right.$	} 5.05	Camas Green Flat	+1.03	}+2.89	$\begin{cases} 29 \ 19 \ 38, 34 \\ 132 \ 38 \ 33, 41 \\ 18 \ 01 \ 53, 60 \end{cases}$	5. 35
Caribou Oxford Putnam	19 49 21	} 89	$\left\{\begin{array}{l} 38 \ 11 \ 02. \ 80 \\ 36 \ 59 \ 47. \ 90 \\ 104 \ 49 \ 21. \ 53 \end{array}\right.$	} 12. 23	Blue Camas Green	+1.35	}+2.73	$\left\{\begin{array}{l} 36 \ 55 \ 43, \ 31 \\ 81 \ 04 \ 36, \ 54 \\ 61 \ 59 \ 46, \ 82 \end{array}\right.$	6.67
Caribou Putnam Middle Butte	25 +.34 +.15	}+ .24	$\begin{cases} 37 \ 45 \ 16. \ 40 \\ 110 \ 27 \ 28. \ 98 \\ 31 \ 47 \ 28. \ 03 \end{cases}$	} 13. 41	Blue Camas Flat	+ .20 10 85	}75	$\left\{\begin{array}{cccc} 90 & 03 & 22. \ 02 \\ 51 & 44 & 58. \ 20 \\ 38 & 11 & 52. \ 38 \end{array}\right.$	} 12.60
Kimama Big Butte Cache	-1.52 + .22 62	}-1.92	$ \left\{ \begin{matrix} 110 & 33 & 27. & 58 \\ 30 & 09 & 09. & 70 \\ 39 & 17 & 40. & 65 \end{matrix} \right.$	17.93	Blue Green Flat	20 + .05 44	μ	$\left\{\begin{array}{cccc} 53 & 07 & 38 & 71 \\ 70 & 38 & 46 & 59 \\ 56 & 13 & 45 & 98 \end{array}\right.$	} 11. 28
Picabo Big Butte Kimama	+ .07 20 + .72	}+ . 59	79 52 55. 86 30 49 12. 36 69 18 03. 54	} 11. 76	Silver Camas Blue	+1.01 70 73	} 42	$\left\{\begin{array}{l} 34 \ 01 \ 36, 32 \\ 77 \ 34 \ 24, 33 \\ 68 \ 24 \ 15, 46 \end{array}\right.$	} 16. 11

Table of triangles.

Table of triangles-Continued.

Station.	Correc- tion to angle from figure adjust- ment.	of closure of tri-	Corrected spherical angle.	Spher- ical excess.	Station.	Correc- tion to angle from figure adjust- ment.	of closure of tri-	Corrected spherical angle.	Spher- ical excess.
Mountain Home Camas Blue	" +1.39 +.96 43	,, }+1.92	94 57 39, 14 61 34 12, 98 23 28 11, 37	" } 3.49	Medical Iron Beaver	" +0.93 36 24	,, }+0. 38	• / // { 55 09 17. 41 51 26 00. 97 73 24 50. 03	" } 8.41
Mountain Home Blue Silver	+ .16 30 + .23	}+ .09	105 58 22.76 44 56 04.09 29 05 43.95	} 10, 80	Medical Iron Maxwell		}+1.08	95 27 07.43 34 08 36.82 50 24 24.85	9, 10
Mountain Home Silver Camas	-1.55 + .78 -1.66	-2. 43		1.82	Medical Beaver Maxwell Fanny		}74	$ \left\{ \begin{array}{c} 40 & 17 & 50.02 \\ 61 & 04 & 32.21 \\ 78 & 37 & 42.59 \\ \mathbf{(36 \ 38 \ 11.32)} \right. $	4.82
Shafer Camas Blue		+ . 52	$\begin{cases} 16 53 38.17 \\ 141 41 54.38 \\ 21 24 35.18 \end{cases}$	7. 73	Fanny Medical Beaver Fanny	63	}48 }+ .64	36 38 11. 32 124 57 37. 04 18 24 15. 26 63 21 15. 79 84 39 47. 02	3.62
Shafer Camas Silver		}+1.05	$\left\{\begin{array}{l} 70 \ 27 \ 00. \ 05 \\ 64 \ 07 \ 30. \ 05 \\ 45 \ 26 \ 48. \ 53 \end{array}\right.$) 18. 63	Fanny Medical Maxwell Fanny Beaver Maxwell		}+ .04 }+ .38	$\begin{bmatrix} 31 59 01.12 \\ 26 43 04.47 \\ 42 40 16.95 \end{bmatrix}$	5, 13
Shafer Blue Silver	1	}+.11	$\begin{cases} 53 & 33 & 21.88 \\ 46 & 59 & 40.28 \\ 79 & 27 & 24.85 \\ 1 & 51 & 39 & 00.62 \end{cases}$	27.01	Maxwell Powder Fanny Maxwell		 	110 36 43.71 104 55 51.17 9 06 54.61 65 57 15.46	1, 24
Squaw Shafer Silver Nyssa		}72	110 26 04.74 17 55 03.82 30 02 36.29	9. 18	Emily Fanny Maxwell	47	91	$\left\{\begin{array}{c} 63 & 28 & 57.04 \\ 86 & 33 & 34.56 \\ 29 & 57 & 33.00 \end{array}\right.$, } 4,60
Nyssa Squaw Shafer Nyssa Squaw Silver		+1.54 + .70	{110 55 46. 81 39 01 41. 42 96 30 05. 90 59 16 46 19	} 4. 52 } 12, 66	Emily Fanny Powder	1	}+ .23	{ 69 04 53.67 77 26 39.95 33 28 30.63	4, 25
Silver Nyssa Shafer Silver		-1.56	59 16 46. 19 24 13 20. 57 66 27 29. 61 71 24 23. 32	17. 32	Emily Maxwell Powder		}08	5 35 56.63 35 59 42.46 138 24 21.80	}.89
Iron Squaw Nyssa	+ .65	32	42 08 24.39 87 49 38.42 70 40 03.55 71 30 26.90	8.87	La Grande Emily Fanny	1	+1.42	94 40 55.40 63 56 43.26 21 22 22.19	. 85
Dry. Iron. Squaw	30 + . 86	+1.23	48 24 09.03 90 57 05.15 40 38 58.48	12,66	Birch Emily Powder Big Hill	+ . 11	+ .41	60 18 28 88 80 05 55 64 39 35 41 31 40 24 50 72	5.83
Dry Iron Nyssa		} 88	$\left\{\begin{array}{cccc} 71 & 00 & 15. \ 97 \\ 53 & 07 & 26. \ 73 \\ 55 & 52 & 27. \ 38 \end{array}\right.$	} 10. 08	Powder	10 +1.97	+2.90	113 13 16.44 26 21 57.92	5.08
Dry Squaw Nyssa		-2. 43	$\left\{\begin{array}{c} 22 \ 36 \ 06. \ 94 \\ 30 \ 01 \ 05. \ 07 \\ 127 \ 22 \ 54. \ 28 \end{array}\right.$	6. 29	Big Hill Emily Birch Big Hill		+2.15	80 01 08.65 33 07 20.80 66 51 32.76 39 36 17.93	2.21
Beaver Iron Dry Maxwell		+1.10	$\left\{\begin{array}{c} 73 \ 33 \ 42. \ 91 \\ 45 \ 14 \ 23. \ 22 \\ 61 \ 12 \ 01. \ 03 \end{array}\right.$	7. 16	Big Hill Powder Birch	1	}34	{ 13 13 43.39 127 10 01.64 (31 20 57.57	2.96
Maxwell Iron Beaver Maxwell		}1. 49	28 13 17.74 17 17 24.15 134 29 22.24 44 03 19.32	4.13	Alkali Big Hill Birch Laurila Big Hill		-1.65	62 31 36.63 86 07 28.07 24 05 40.86 108 03 27.99	2.27
Maxwell Iron Dry Maxwell Beaver Dry		} }	$\begin{cases} 62 & 31 & 47. & 37 \\ 78 & 25 & 06. & 80 \\ 15 & 50 & 01. & 58 \\ 151 & 56 & 54. & 85 \\ 151 & 56 & 54. & 85 \\ \end{cases}$	13. 492. 20	Laurila Big Hill Birch Laurila Big Hill Alkali	+ . 67	-2.02 +1.08	1 47 50 53.46 70 57 02.42	2.31
Dry	– 1. 35	'1	12 13 05.77	ij i	Alkali	+1.08	l)	63 31 09.54	IJ

Table o	f tria1	rgles—C o	ntinued.
---------	---------	------------------	----------

Station.	Correc- tion to angle from figure adjust- ment.	of closure of tri-	Corrected spherical angle.	Spher- ical excess.	Station.	Correc- tion to angle from figure adjust- ment.	of closure of tri-	Corrected spherical angle.	Spher- ical excess.
Laurila Birch Alkali	+ .41	" }+1.45	• / // { 46 51 21.56 38 16 34.61 94 52 07.11	" } 3.28	Montgomery. Alder Toby	44	″ }-0. 92	° ' '' { 78 19 42.05 56 40 46.39 44 59 33.98	"] 2.42
Job Laurila Alkali	+ . 16 43 77	}-1.04	$\left\{\begin{array}{cccc} 71 & 35 & 44. & 13 \\ 37 & 21 & 05. & 48 \\ 71 & 03 & 12. & 08 \end{array}\right.$	} 1.69	Montgomery. Ella Toby	17 +1.02 +.41	+1.28	36 03 13.27 43 25 50.24 100 30 58.95	2.46
Expansion Laurila Alkali		}+ .01	{ 39 49 27.09 102 20 57.23 37 49 38.30	2.62	John Montgomery. Toby	32 +.13 +.55	}+ .36	42 04 17.75 49 10 36.21 88 45 09.33	3.29
Expansion Laurila Job	33 67 + .44	} 56	59 18 17.52 64 59 51.75 55 41 53.15	2.42	Maryhill Montgomery. Toby	+ .14 + .46 24	}+ .36	{ 40 16 10.21 99 26 37.94 40 17 14.73	2.88
Expansion Alkali Job	98 -1.23 +.60	-1. 61	$\left\{\begin{array}{c}19&28&50.\ 43\\33&13&33.\ 78\\127&17&37.\ 28\end{array}\right.$	} 1.49	Maryhill Montgomery. John	+ .24 + .33 + .58	+1.15	87 40 24.54 50 16 01.73 42 03 37.08	} 3.35
Expansion Stanfield east base Stanfield west base		+ . 52	41 04 34.35 82 48 45.12	. 88	Maryhill Toby John	+ .10 + .79 + .26	+1.15	{ 47 24 14.33 48 27 54.60 84 07 54.83	3.76
Job	-1.17	1	56 06 41.41 (45 27 37.59)	Stacker Maryhill John	+ .45 + .51 + .57	+1.53	47 35 24.50 99 04 53.31 33 19 45.02	2. 83
Stanfield west base Expansion	+ .41 57	}-1.33	96 44 58 12 37 47 25 65	1. 36	Lookout Stacker Maryhill	+ .22 +1.04 +1.04	+2,30	15 39 18.00 134 52 20.91 29 28 23.84	2.75
Job Stanfield west base Stanfield east	00	-1. 48	50 22 22.90 40 38 16.71	. 59	Lookout Stacker John	+ . 59 + . 59 33	+ . 85	{ 45 55 33.30 87 16 56.41 46 47 37.26	6.97
base Job Expansion Stanfield east	+ .16) }+ .37	$ \begin{bmatrix} 88 59 20.98 \\ 4 54 45.31 \\ 3 17 08.70 \end{bmatrix} $) }.11	Lookout Maryhill John	+ .37 53 + .24	+ .08	$\left\{\begin{array}{l} \textbf{30 16 15.30} \\ \textbf{69 36 29.47} \\ \textbf{80 07 22.28} \end{array}\right.$	7.05
Stanfield east base EchoJob	+ .76		$ \begin{bmatrix} 171 & 48 & 06. & 10 \\ 70 & 12 & 33. & 63 \\ 36 & 52 & 25. & 42 \end{bmatrix} $]	Chinidere Stacker Lookout	71 -1.24 66	-2,61	{ 64 46 33.22 37 03 52.18 78 09 39.22	4.62
base	+ .95	}+ .87	72 55 01.25	}.30	Huckle Stacker Lookout	+ .09 75 + .06	}- ,60	54 53 26.08 73 28 28.03 51 38 12.40	6. 51
Alder Expansion Job		-1. 31	38 59 51.50 77 43 51.12 63 16 21.67	4. 29	Huckle Stacker Chinidere	+ .12 + .49 + .57	}+1.18	82 12 58.90 36 24 35.85 61 22 29.61	4. 36
Ella. Alder Expansion		-1. 46	61 22 42 63 82 19 34 25 36 17 47 28	4. 16	Huckle Lookout Chinidere	+ .03 72 14	}83	$\left\{\begin{array}{cccc} 27 & 19 & 32.82 \\ 26 & 31 & 26.82 \\ 126 & 09 & 02.83 \end{array}\right.$	2. 47
Ella Alder Job	35 56 +1.00	}+ .09	$\left\{\begin{array}{l} 99 \ 11 \ 33. \ 74 \\ 43 \ 19 \ 42. \ 75 \\ 37 \ 28 \ 46. \ 66 \end{array}\right.$	3. 15	Red Huckle Chinidere	13 17 41	}71	$\begin{cases} 57 & 32 & 49. 04 \\ 107 & 21 & 24. 96 \\ 15 & 05 & 46. 87 \end{cases}$. 87
Ella Expansion Job	54 +.54 +.24	}+ .24	$\left\{\begin{array}{l} 37 \ 48 \ 51. \ 11 \\ 41 \ 26 \ 03. \ 84 \\ 100 \ 45 \ 08. \ 33 \end{array}\right.$	3, 28	Larch Red Huckle	+ .76 + .06 09	}+ .73	$\left\{\begin{array}{l} 12 \ 19 \ 17.\ 54 \\ 83 \ 37 \ 34.\ 45 \\ 84 \ 03 \ 09.\ 32 \end{array}\right.$	} 1.31
Toby Alder Ella	+ .26 + .72 + .91	}+1.89	$\left\{\begin{array}{l} 55 & 31 & 24. \\ 45 & 45 & 17. \\ 78 & 43 & 20. \\ 27 \end{array}\right.$	2. 41	Larch Red Chinidere	+ .82 + .19 + .55	}+1.56	$\left\{\begin{array}{l} 49 \ 38 \ 22. \ 35 \\ 26 \ 04 \ 45. \ 41 \\ 104 \ 16 \ 54. \ 37 \end{array}\right.$	2. 13
Montgomery. Alder Ella	46 + .28 11	}29	$ \begin{cases} 42 & 16 & 28, 78 \\ 102 & 26 & 03, 56 \\ 35 & 17 & 30, 03 \end{cases} $	2.37	Larch Huckle Chinidere	+.06 08 +.14	+ .12	$\left\{\begin{array}{l} 37 \ 19 \ 04. \ 81 \\ 23 \ 18 \ 15. \ 64 \\ 119 \ 22 \ 41. \ 24 \end{array}\right.$	} 1.69

ACCURACY OF OBSERVATIONS.

The maximum correction to any one angle is $+3.^{n}$ 19 to the angle at Emily between the lines to Fanny and La Grande. A table is given below showing statistics in regard to the accuracy of the precise triangulation of the arc considered in this publication. The mean error of an angle $\alpha = \sqrt{\frac{\Sigma\Delta^{2}}{3n}}$, in which $\Sigma\Delta^{2}$ is the sum of the squares of the closing errors of the triangles and n is the number of triangles.

STATISTICS SHOWING ACCURACY OF TRIANGULATION.

Total number of triangles	96
Number of triangles with plus closures	51
Number of triangles with minus closures	38
Number of concluded triangles	7
Average closure of a triangle	
Maximum closure of a triangle	3.26
Mean error of an angle	±0.79
Probable error of an observed direction	±0. 49

The average closing error of the 89 closed triangles of this arc of primary triangulation is 1.12. The instructions call for 1.000 closing error on the average. The instructions say that the closing error of a triangle shall seldom exceed 3.000. In this work the maximum is exceeded in only one instance, where the triangle closure is 3.226.

A comparison of the average closing errors in various arcs is given below:

	A verage closing error.
Ninety-eighth meridian in United States and Mexico	0."63
Texas-California arc	90
Ninety-eighth meridian arc	92
One hundred and fourth meridian arc	
Transcontinental triangulation Utah-Washington arc	1.06
Utah-Washington arc	1.12
Eastern oblique arc	1.19
California-Washington arc	1.22

COMPUTATION, ADJUSTMENT, AND ACCURACY OF THE ELEVATIONS.

The zenith distances directly observed at each station were first computed. These zenith distances were corrected for height of the object observed and of instrument so as to refer them all to the ground at each station or to the surface marks at the station.

The difference of elevation of each pair of stations in the main scheme was then computed from the observations over the line joining them by the formula

$$h_2 - h_1 = s \tan \frac{1}{2} (\zeta_2 - \zeta_1) [A B C]$$

in which h_2 and h_1 are elevations of the stations, ζ_2 and ζ_1 are the measured zenith distances as corrected for height of instrument and of object observed, s is the horizontal distance between the stations, and A, B, and C are correction factors whose values are nearly unity and

whose logarithms may be found on pages 64 and 65 of U.S. Coast and Geodetic Survey Special Publication No. 26.

As there are always two or more lines to each new station, many rigid conditions exist between the observed differences of elevation, even if the connections with the precise leveling were ignored, and the least square adjustment furnishes the readiest accurate means of deriving the elevations.

The elevations of stations of the precise triangulation of the present arc were adjusted in two sets of equations. The solution of the first set fixed all the elevations of the precise stations between the lines Cache-Oxford and Silver-Nyssa.

In the first adjustment the elevations of Ogden Peak and Pilot Peak, stations of the thirty-ninth parallel triangulation, were held fixed at 2918.45 and 3262.47 meters, respectively. These elevations appear on page 148 of U. S. Coast and Geodetic Survey Special Publication No. 19. Besides these elevations those of five other stations, determined either by precise levels or connected directly with precise level bench marks, were held fixed. These stations are Oxford, B. M. Q₆, Mountain Home, Nyssa, and B. M. G, and their respective elevations are, 2828.81, 1366.09, 955.50, 697.04, and 663.57 meters.

The probable error of an observation of weight unity derived from the adjustment is ± 0.78 meter. In other words, the reciprocal observations over a line 31.7 kilometers (19.7 miles) long, this being the length of line corresponding to unit weight, determined the difference of elevation of two points with such accuracy that it is an even chance whether the error is greater or less than 0.78 meter. The probable errors for the lines were assumed to be proportional to their lengths.

The probable error of the elevation of the Salt Lake base is ± 0.04 meter. The probable error of the stations Ogden Peak and Pilot Peak probably does not exceed ± 0.6 meter. The probable error of the other fixed stations probably does not exceed this.

Of the stations whose elevations were determined by reciprocal observations station Stump was assumed to be the one least accurately determined, and its probable error was computed as a limiting value and found to be ± 0.40 meter from the vertical angles alone. When combined with the probable error of the fixed stations, it became ± 0.72 meter.

In the second set of equations the elevations of Silver and Shafer, stations of the first set of equations, were held fixed at 2562.05 and 2313.87 meters, respectively. Stations Nyssa, La Grande, Alkali, Job, Stanfield west base, Stanfield east base, and Echo were determined either by precise levels or connected directly with precise level bench marks, and their elevations were held fixed at 697.04, 849.72, 827.17, 513.78, 188.94, 231.11, and 217.04 meters, respectively. The elevations of Larch and Red, stations of the California-Washington arc of precise triangulation, were held fixed at 1234.89 and 1517.31 meters, respectively.

The probable error of an observation of weight unity derived from the adjustment of this second set of equations is ± 0.99 meter. In other words, the reciprocal observations over a line 31.7 kilometers (19.7 miles) long, this being the length of the line corresponding to unit weight, determined the difference of elevation of two points with such accuracy that it is an even chance whether the error is greater or less than 0.99 meter. The probable errors for other lines were assumed to be proportional to their length.

Station Dry was assumed to be the one least accurately determined, and its probable error was computed as a limiting value and found to be ± 1.19 meters.

The datum for all the elevations is mean sea level. The stations are in three classes: First, those fixed by direct connection with precise level elevations, the elevations of which are subject to a probable error of ± 0.04 meter; second, the stations in the main scheme fixed by reciprocal measures of vertical angles and subject to probable errors varying from ± 0.1 meter to ± 1.2 meters; and, third, the intersection stations, the elevations of which are fixed by measurement of vertical angles which are not reciprocal, the stations not being occupied, and subject to probable errors which may be as great as ± 3 meters.

The table of elevations is given in Part I. (See p. 22).

73

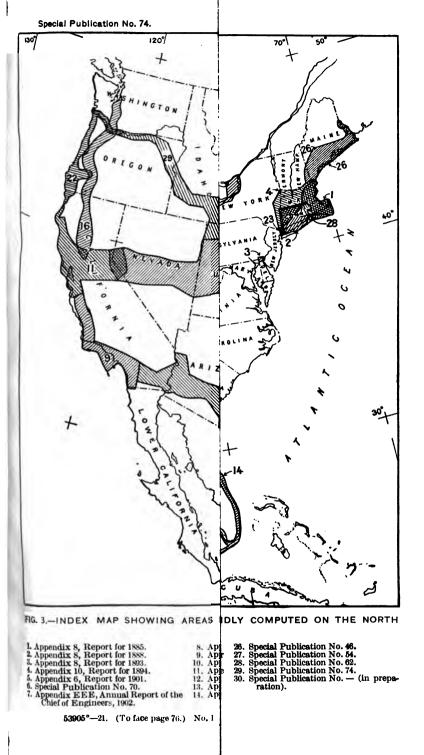
• • • . ١ .

INDEX TO POSITIONS, DESCRIPTIONS, ELEVATIONS, AND SKETCHES.

Station.	Position.	Description.	Elevation.	Sketch.	Station.	Position.	Description.	Elevation.	Sketch.
Alder (U. S. G. S.) Alder reference mark	Page. 17 17	Page. 28	Page. 22	No.	Gate Granite	Page.	Page. 31 31	Page. 22	No.
Alkali (U.S.G.S.)	16	28	22	6	Gravel	20 20	31	22	6 6 5
Alkali reference mark Arbuckle	16 20	31		6	Green reference mark	15 15	2 5	22	
					Green (U.S.G.S.) cairn .	19	•••••	•••••	5
Bald Peter Besver	21 15	31 26	22	6 6	Henry. Henry (U. S. G. S.).	18 18	30	22	5
Beaver reference mark Beanet	15 20		22	6	Huckle	18	29	22	5
Big Butte	14	24	22	5	Huckle reference mark	18	•••••	•••••	•••••
Big Butte reference mark. Big Butte (U. S. G. S.)	14	•••••		•••••	Idaho-Oregon boundary monument	19	30	22	
cairn Big Hill	19 16	27	22	5 6	Ireland Mountain look-			22	5
big Hill reference mark	16				out cupols Iron	20 15	31 26	22	6
Big Huckleberry Birch.	21 16	32 27	22 22	6	Iron reference mark	15			
DITCH FATAFANCA MARK	16				Iron (U. S. G. S.)	20	• • • • • •	•••••	6
Blackfoot B. M. Q. 6 Blue	19 15	30 25	22	5 5	Jacob Gohl's ranch house Job	19 16		22 22	5
Blue reference mark B. M. G.	15 19	30	22	5	Job reference mark	17			
D. M. G. reference mark.	19				John John reference mark No. 1	17 17	29	22	6
Bonida iron elevator, north gable	18		22	5	John reference mark No. 2	18			
Boundary monument, Idaho-Oregon					Kimama	14	25	22	5
Iuano-Oregon	19	30	22	5	Kimama reference mark.	14			
Cache	14	24	22	5	La Grande	16	27	22	6
Camas.	15 15	25	22	5	La Grande Astronomic La Grande reference	20	•••••	•••••	6
Camas reference mark Camas (U.S.G.S.) cairn.	19				mark No. 1	16			
Caribou Caribou reference mark	14 14	25	22	5	La Grande reference mark No. 2	16			
Caribou (U.S.G.S.) Castle Rock Butte	19 20			5 6	La Grande reference mark No. 3	16			
Catholic Church spire.		•••••			Laurila	16	28	22	
Echo. Chinidere.	20 18		22 22	6 6	Lemei Rock	21 21			6
viundere reierence mark.	18				Little. Little Butte (U. S. G. S.)				
Chinidere (U. S. G. S.) cairn.	21			6	cairn. Lookout.	19 18	29	22	5
Concrete gatehouse, northwest corner	20			6	Lookout reference mark	18			
	20	•••••		0	Maryhill (U. S. G. S.)	18	29	22	6
Dietrich standpipe	19	26	22 22	5	Maryhill reference mark Maxwell	18 16	27	22	6
Dry . Dry reference mark.	15 15	20	22	6	Maxwell reference mark	16			
Dry (U. S. G. S.) cairn	20	•••••	·····	6	Medical Medical reference mark	16 16	27	22	6
East Echo	21		22	6	Middle Butte Middle Butte reference	14	25	22	5
Echo. Echo Catholic Church spire.	17	28	22	6	mark	14			
spire	20 17		22	6	Middle Butte (U. S. G. S.) cairn.	19			6
Echo reference mark	17	28			Mitchell	19	30	22	5
Ella reference mark Emily.	17 16	27			Mitchell reference mark Mitchell (U. S. G. S.)	19	•••••		• • • • • •
wally reference mark	16			6	cairn. Montgomery (U.S.G.S.)	19 17	29		5
Expansion Expansion reference	17	28	22	6	Montgomery reference		20		
mark.	17				mark Mount Adams, north-	17	• • • • • •	•••••	•••••
Fallbridge standarias	21	ĺ		• 6	west peak.	21			6
Fanny reference mark Fanny (U. S. G. S.) cairn	16	27	22	6	Mount Adams, south- east peak	21			e
Fanny reference mark Fanny (U. S. G. S.) cairn.	16 20		•••••	·····. 6	Mountain Home Mountain Home refer-	15	26	22	5
Plat reference mark	14	25	22	5	ence mark	15			
ICLOTELICS INAIK	14		•••••		Mount Hood	21		22	6

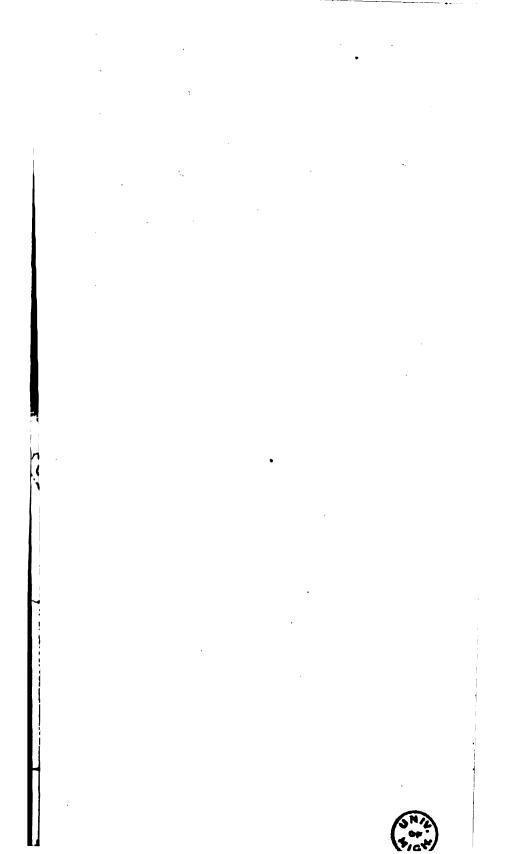
Station.	Position.	Description.	Elevation.	Sketch.	Station.	Position.	Description.	Elevation.	Sketch,
North	Page. 21 15 15 20 21 19 14 18 18 18 18 18 19 14 16 17 20 21 15 20 21 15 15	26 32 30 24 29 25 27 30 30 30 30 30 31 25 31 25 31 26	22 22 22 22 22 22 22 22 22 22 22 22 22	No. 6 5,6 5 5 5 5 5 5 5 5 5 5 5 5 5	Squaw Squaw reference mark Stacker reference mark Stacker reference mark. Stanfield east base. re- f erence mark No. 1 Stanfield east base Stanfield west base re- ference mark No. 2 Stanfield west base re- ference mark. State Forestry Service, lookout tower, north- west corner Stump Teton Peak Toby (U.S. G.S.) Toby reference mark Toby (U.S. G.S.) Toby ference mark Toby careformer mark Toby careformer mark Toby careformer mark Toby careformer mark Toby and the standpipe Umatilla standpipe U.S.E. monument 43R. U.S.E. monument 143L. U.S.E. monument 149L, eccentric U.S.G.S. B.M	15 15 18 18 17 17 17 17 17 17 17 17 17 17 17 17 17 20 21	Page. 26 29 28 28 28 28 28 28 29 30 31 31 31 32 	22 22 22 22 22 22 22 22 22 22 22 22 22	No. 5, 6 5, 6 6 6 6 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6
Silver Silver reference mark South	15 15 21	26 	22 22	5 6	West. Woodall Woodall (U. S. G. S.)	21 18 19	30	22 22 	5 5

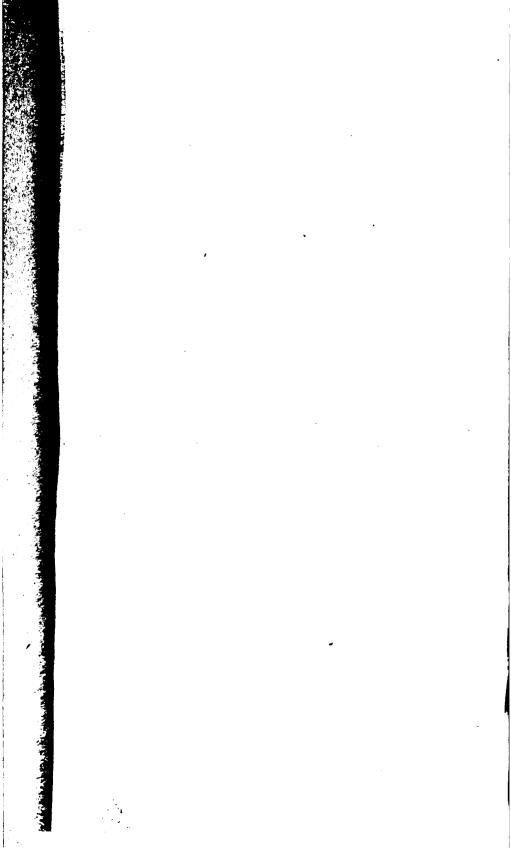
INDEX TO POSITIONS, DESCRIPTIONS, ELEVATIONS, AND SKETCHES—Continued.

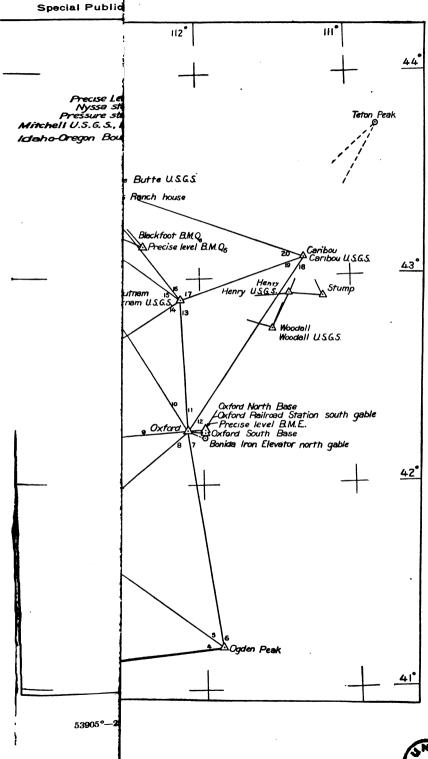

0

Station.	Position.	Description.	Elevation.	Sketch.	Station.	Position.	Description.	Elevation.	Sketch,
North. Nyssa. Nyssa reference mark. Nyssa standpipe. Observation. Oregon-Idaho boundary monument. Oxford north base. Oxford north base. Oxford railroad station, south gable. Oxford south base. Picabo reference mark. Powder reference mark. Precise level B. M. G. Precise level B. M. G. Precise level B. M. G. Precise level B. M. M. Precise level B. M. S. Precise level B. M. S. Putnam (U. S. G. S.). Rock Creek Mountain, cairn. Shafer reference mark. Shafer reference mark. South.	155 1520 20 21 19 14 18 18 18 18 18 18 18 18 18 18 18 18 18	Page. 26 32 30 24 29 29 25 27 30 30 30 30 30 30 31 25 	Page. 22 22 22 22 22 22 22 22 22 22 22 22 22	No. 5,6 5,6 5 5 5 5 5 5 5 5 5 5 5 5 5	Squaw. Squaw reference mark Stacker reference mark Stacker reference mark Stanfield east base Stanfield east base, re- f erence mark No. 1 Stanfield west base Stanfield west base Stanfield west base State forestry Service, lookout tower, north- west corner Stup reference mark Toby (U.S. G. S.) Toby (U.S. G. S.) Toby reference mark Tower Typh Umatilla standpipe Umatilla standpipe U.S. E. monument 43R. U.S. E. monument 149L, eccentric U.S. G. S. B. M West Woodall (U.S. G. S.)	Page. 15 15 15 15 15 15 15 15 16 17 17 17 17 17 17 17 17 17 19 19 19 19 19 19 19 20 21 20 21 21 20 21 20 21 21 20 21 21 20 21 21 20 21 21 21 20 21 21 21 21 21 21 21 21 21 21	Page. 26 29 28 28 28 28 28 28 28 29 30 31 31 31 31 31 32 32 32 32 30	Page. 22 22 22 22 22 22 22 22 22 22 22 22 22	No. 5,6 6
				1		l	i		

INDEX TO POSITIONS, DESCRIPTIONS, ELEVATIONS, AND SKETCHES—Continued.


0




· · ·

.

L

